Several organisations active in the health care market make decisions based on an estimation of the number of individuals infected with an infectious disease. These organisations benefit from a timely and trust-worthy prediction o...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto DEFOG
Duración del proyecto: 30 meses
Fecha Inicio: 2019-09-12
Fecha Fin: 2022-03-31
Líder del proyecto
UNIVERSITEIT HASSELT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
132K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Several organisations active in the health care market make decisions based on an estimation of the number of individuals infected with an infectious disease. These organisations benefit from a timely and trust-worthy prediction of the number of infected individuals. To date, infectious disease predictions tools are inadequate because they typically include limited and domain-specific data and because the translation to impact for specific stakeholders in the healthcare market is lacking. DEFOG proposes a data science solution as we will integrate classical surveillance data, pharmacy sales data, out-of-hours general practitioners data and social contact data in a novel real-time forecasting tool that will yield better and more rapid warning signals of the number of infected cases. DEFOG will produce software and know-how under intellectual property of the principal investigator which will be exploited through licence agreements with and consultancy services for various stakeholders. DEFOG will build on recent advances in mathematical modelling for infectious diseases as part of the original ERC-TransMID project. The team offers a vast amount of expertise in mathematical and infectious disease modelling, computational processing, business development and has an extensive collaborative network with research centres, regulatory agencies and companies, of which 4 entities already expressed interest in exploring the use and/or sharing data for of the proposed innovative real-time disease forecasting tool.