Dark Soliton Engineering in Microresonator Frequency Combs
The continuing increase in Internet data traffic is pushing the capacity of single-mode fiber to its fundamental limits. Space division multiplexing (SDM) offers the only remaining physical degree of freedom – the space dimension...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-104426GB-I00
PROCESAMIENTO DE PEINES FOTONICOS PARA REDES DE COMUNICACION...
26K€
Cerrado
STAND
Standalone soliton microcomb system
100K€
Cerrado
TEC2008-06598
APLICACION DE TECNICAS DE DIVERSIDAD ESPACIAL Y OPTICA ADAPT...
109K€
Cerrado
AMUSIC
nonlineAr Multimode and mUlticore optical fiberS for multIpl...
195K€
Cerrado
ICONE
Allied Initiative for Training and Education in Coherent Opt...
4M€
Cerrado
FREESPACE
Free space optical transmission links with unprecedented rec...
150K€
Cerrado
Información proyecto DarkComb
Duración del proyecto: 68 meses
Fecha Inicio: 2018-02-15
Fecha Fin: 2023-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The continuing increase in Internet data traffic is pushing the capacity of single-mode fiber to its fundamental limits. Space division multiplexing (SDM) offers the only remaining physical degree of freedom – the space dimension in the transmission channel – to substantially increase the capacity in lightwave communication systems.
The microresonator comb is an emerging technology platform that enables the generation of an optical frequency comb in a micrometer-scale cavity. Its compact size and compatibility with established semiconductor fabrication techniques promises to revolutionize the fields of frequency synthesis and metrology, and create new mass-market applications.
I envision significant scaling advantages in future fiber-optic communications by merging SDM with microresonator frequency combs. One major obstacle to overcome here is the poor conversion efficiency that can be fundamentally obtained using the most stable and broadest combs generated in microresonators today. I propose to look into the generation of dark, as opposed to bright, temporal solitons in linearly coupled microresonators. The goal is to achieve reliable microresonator combs with exceptionally high power conversion efficiency, resulting in optimal characteristics for SDM applications. The scientific and technological possibilities of this achievement promise significant impact beyond the realm of fiber-optic communications.
My broad international experience, unique background in fiber communications, photonic waveguides and ultrafast photonics, the preliminary results of my group and the available infrastructure at my university place me in an outstanding position to pioneer this new direction of research.