Cybernetic Communication Networks Fundamental Limits and Engineering Challenges
This Reintegration Panel proposal, CYBERNETS, focuses on the study of Cybernetic Communication Networks (CCN). CCNs are wireless networks that are context-aware, possess learning capabilities and artificial intelligence to guarant...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This Reintegration Panel proposal, CYBERNETS, focuses on the study of Cybernetic Communication Networks (CCN). CCNs are wireless networks that are context-aware, possess learning capabilities and artificial intelligence to guarantee reliability, efficiency and resilience to changes, failures or attacks via autonomous, self-configuring and self-healing individual and network behavior. Typical examples of CCNs are beyond-5G cellular systems and critical communication systems, e.g., law enforcement, disaster relief, body- area, medical instruments, space, and indoor/outdoor commercial applications. A practical implementation of a CCN requires extending classical communication systems to embrace the dynamics of fully decentralized systems whose components might exhibit either cooperative, non-cooperative or even malicious behaviors to improve individual and/or global performance. In this context, CYBERNETS aims to develop a relevant understanding of the interactions between information theory, game theory and signal processing to tackle two particular problems from both theoretical and practical perspectives: (I) use of feedback and (II) behavior adaptation in fully decentralized CCNs. In the former, the main objectives are: (i) to determine the fundamental limits of data transmission rates in CCNs with feedback; and (ii) to develop and test in real-systems, transmit-receive configurations to provide a proof-of-concept of feedback in CCNs. For the achievement of these practical objectives, CYBERNETS relies on the world-class testbed infrastructure of INRIA at the CITI Lab for fully closing the gap between theoretical analysis and real-system implementation. In the latter, the main objectives are: (i) to identify and explore alternatives for allowing transmitter-receiver pairs to learn equilibrium strategies in CCNs with and without feedback; (ii) to study the impact of network-state knowledge on scenarios derived from the malicious behavior of network components.