Cuts and decompositions algorithms and combinatorial properties
In this proposal we plan to extend mathematical foundations of algorithms for various variants of the minimum cut problem within theoretical computer science.
Recent advances in understanding the structure of small cuts and tracta...
In this proposal we plan to extend mathematical foundations of algorithms for various variants of the minimum cut problem within theoretical computer science.
Recent advances in understanding the structure of small cuts and tractability of cut problems resulted in a mature algorithmic toolbox for undirected graphs under the paradigm of parameterized complexity. In this position, we now aim at a full understanding of the tractability of cut problems in the more challenging case of directed graphs, and see opportunities to apply the aforementioned successful structural approach to advance on major open problems in other paradigms in theoretical computer science.
The specific goals of the project are grouped in the following three themes.
Directed graphs. Chart the parameterized complexity of graph separation problems in directed graphs and provide a fixed-parameter tractability toolbox, equally deep as the one in undirected graphs. Provide tractability foundations for routing problems in directed graphs, such as the disjoint paths problem with symmetric demands.
Planar graphs. Resolve main open problems with respect to network design and graph separation problems in planar graphs under the following three paradigms: parameterized complexity, approximation schemes, and cut/flow/distance sparsifiers. Recently discovered connections uncover significant potential in synergy between these three algorithmic approaches.
Tree decompositions. Show improved tractability of graph isomorphism testing in sparse graph classes. Combine the algorithmic toolbox of parameterized complexity with the theory of minimal triangulations to advance our knowledge in structural graph theory, both pure (focused on the Erdos-Hajnal conjecture) and algorithmic (focused on the tractability of Maximum Independent Set and 3-Coloring).ver más
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.