The Gromov--Witten invariants of a space X record the number of curves in X of a given genus and degree which meet a given collection of cycles in X. Gromov--Witten theory is an extremely active field of research, and through its...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto LOGEO
Duración del proyecto: 53 meses
Fecha Inicio: 2021-03-16
Fecha Fin: 2025-08-31
Líder del proyecto
UNIVERSITEIT LEIDEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
253K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The Gromov--Witten invariants of a space X record the number of curves in X of a given genus and degree which meet a given collection of cycles in X. Gromov--Witten theory is an extremely active field of research, and through its technical challenges attracts some of the most talented researchers at the interface of geometry with physics, who have made a lot of progress here over the last 20 years. We propose a program to apply Gromov--Witten theory to questions from a broad range of areas of mathematics: from sheaf counting theories, from mirror symmetry, and from the moduli theory of curves. The key new ingredient here is the recent significant advance in our understanding of these theories using logarithmic (log) geometry, which is a modern variant of algebraic geometry, developed to deal with two fundamental and related problems: compactification and degeneration. We will investigate solutions to these problems in interlinked areas of algebraic geometry, and use them to obtain major advances in Gromov--Witten theory. Building on the success of our previous work on log Gromov--Witten theory, we propose a program to 1) construct a computationally effective log geometric extension of sheaf counting theories, 2) develop new techniques to enumerate curves in Deligne-Mumford stacks (orbifolds) and to construct mirrors to such stacks, and; 3) investigate stability in the moduli spaces of curves along with original new connections to quiver-stability theories. Completion of these projects, will break new ground in enumerative algebraic geometry, and even if not all of the overall goals are achieved it will be a cornerstone in understanding curve-counting in different setups via modern log geometric techniques.