Cryogenic on-chip Levitated Optomechanics for a Spin Entanglement witness to Qua...
Cryogenic on-chip Levitated Optomechanics for a Spin Entanglement witness to Quantum Gravity
This proposal addresses one of the key challenges of modern physics: understanding the interface between quantum mechanics and general relativity. Recently, an experimental test was proposed that can directly witness the need to u...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SCOPE
Spinor Bose Einstein Condensates for many particle entanglem...
174K€
Cerrado
EntangleUltraCold
Entanglement in Strongly Correlated Quantum Many Body System...
2M€
Cerrado
ADDRESSING
Ultracold quantum gases in optical lattices with single site...
167K€
Cerrado
QuHAMP
A quantum hybrid of atoms and milligram-scale pendulums: tow...
2M€
Cerrado
QSuperMag
Harnessing Quantum Systems with Superconductivity and Magnet...
1M€
Cerrado
QLev4G
Quantum control of levitated massive mechanical systems a n...
2M€
Cerrado
Información proyecto CLOSEtoQG
Duración del proyecto: 59 meses
Fecha Inicio: 2022-06-01
Fecha Fin: 2027-05-31
Líder del proyecto
UNIVERSITEIT LEIDEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal addresses one of the key challenges of modern physics: understanding the interface between quantum mechanics and general relativity. Recently, an experimental test was proposed that can directly witness the need to unify the two theories: observing quantum entanglement between objects that only interact through the gravitational field. A successful test would prove the existence of superpositions of space-time and have far-reaching implications on how we understand our world.So far, no experimental platform exists that can meet the challenging central requirement for this test: A picogram-scale mass in a micrometre-scale spatial superposition with a second-scale coherence time. Here I propose to build such a platform.The objectives of the research are to trap and levitate a picogram mass, cool its centre-of-mass motion to the quantum ground state, couple its motion to a controllable qubit system and, finally, produce and measure a spatial superposition of the mass.Considering all requirements, I identify the unique combination of techniques necessary to achieve this:- diamagnetic levitation at cryogenic temperatures using on-chip superconducting coils;- on-chip superconducting quantum interference device (SQUID)-resonator based sideband cooling;- coupling to solid-state spin qubits.Combining recent microfabrication techniques for chip-based confinement of micro-particles, high-Q resonant circuits and microscopic diamond membranes with spins, it is now possible to realize this system in the lab. My extensive experience with spins and nanomechanical systems as well as microfabrication and low-noise cryogenic measurements, and Leiden University?s infrastructure for vibration-isolated cryogenics supports CLOSEtoQG?s objectives.The research would represent a major step towards a spin-based entanglement witness of quantum gravity. Moreover, each sub-objective can benefit applications in force sensing and magnetic resonance force microscopy.