Every second, our smart phones deliver a wealth of information that can be used to monitor the traffic, the financial transactions, and even the spread of a dangerous disease. The processing of these big data into a meaningful inf...
Every second, our smart phones deliver a wealth of information that can be used to monitor the traffic, the financial transactions, and even the spread of a dangerous disease. The processing of these big data into a meaningful information requires specific machine learning (ML) algorithms, which essentially consist of regression techniques for inference, classification and prediction. The conventional digital computers are not designed to optimally solve these problems with efficient time and energy consumption, which is one of the reasons why the power consumption by data centers worldwide is expected to triple in the next decade. Such a poor energy efficiency is essentially due to the physical separation between the central processing unit (CPU), where data are computed, and the memory, where data are stored, according to classical von Neumann computer architecture. In the frame of our ERC-CoG RESCUE, my group has developed a new paradigm to efficiently execute ML tasks in just one step within the memory. Instead of moving data from the memory to the digital CPU, an analogue computation is directly operated within the data, thus breaking all previous limits of time and energy consumption (10.000x reduction in the number of operations, hence time, and 1.000x in energy). Our in-memory technology is modular and universal, thus can be implemented in any existing memory and computing technology to accelerate ML tasks in future smartphones and data centers. In the ERC-PoC CIRCUS, we aim at bringing this technology to a higher maturity level, demonstrating its scalability and technical feasibility by simulations and realization of a small-scale prototype. In the meantime, we will also perform a comprehensive market search to recognize opportunities and draft an investor-ready business plan for raising future investments to further advance the solution toward industrial exploitation.ver más
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.