Cross omics integration to identify modulators for improving vaccine efficacy
Influenza is a significant public health threat and vaccines are crucial for preventing infections at population-level. The efficacy of vaccination per individual, however, is highly variable. The causes for this broad variability...
Influenza is a significant public health threat and vaccines are crucial for preventing infections at population-level. The efficacy of vaccination per individual, however, is highly variable. The causes for this broad variability in vaccine response between individuals remain poorly understood. In this proposal, I hypothesize that genetic variants and their downstream pathways underlie the heterogeneity in vaccine response between individuals. This ERC project aims to for the first time, systematically investigate the interactions between genetic, non-genetic host and environmental factors, and the response to vaccination in order to build reliable models for predicting vaccine efficacy. The outcomes of this research will pinpoint key deterministic factors and identify modulators that can be used to improve vaccination strategies. This project is based on the expertise that my research group has built up for identifying the downstream consequences of genetic variants, and for predictive modelling through integration of large cross-omics datasets. Given the rapid evolution of influenza virus, I will use seasonal trivalent inactivated influenza vaccines as prototype responses within two cohorts of 500 individuals from the Netherlands and 200 individuals from Germany. I will systematically generate, analyse, and integrate the cross-omics data (six layers of information from genome, epigenome, transcriptome, proteome, metabolome, and microbiome) with immune phenotypes (e.g. antibody titers, an important indicator of protection) using novel computational methods. This research will reveal the previously unknown cell-types, molecules, and pathways involved in vaccine-induced immune response and provide mathematical models for predicting individual variation in immune response, a crucial first step towards personalized prevention. The key molecules I identify will provide leads for pharmacological modulators for improving vaccine efficacy.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.