Cross dimensional Activation of Two Dimensional Semiconductors for Photocatalyti...
Cross dimensional Activation of Two Dimensional Semiconductors for Photocatalytic Heterojunctions
Spacetime defines existence and evolution of materials. A key path to human’s sustainability through materials innovation can hardly circumvent materials dimensionalities. Despite numerous studies in electrically distinct 2D semic...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SCI-PHI
Single-atom Catalysis in Photocatalytic Investigations
184K€
Cerrado
CTQ2012-30751
ESTUDIO QUIMICO-CUANTICO Y DISEÑO COMPUTACIONAL DE MATERIALE...
125K€
Cerrado
RYC2019-027940-I
RATIONAL DESIGN OF MULTIFUNCTIONAL MOLECULAR MATERIALS: FROM...
309K€
Cerrado
GRAPES
GRaphene Enhancement of the Photocatalytic Activity of Semic...
222K€
Cerrado
PHOTOSTM
Investigating Photo Catalytic Reactions at the Molecular Sca...
253K€
Cerrado
Duración del proyecto: 64 meses
Fecha Inicio: 2020-12-18
Fecha Fin: 2026-04-30
Líder del proyecto
OULUN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Spacetime defines existence and evolution of materials. A key path to human’s sustainability through materials innovation can hardly circumvent materials dimensionalities. Despite numerous studies in electrically distinct 2D semiconductors, the route to engage them in high-performance photocatalysts remains elusive. Herein, CATCH proposes a cross-dimensional activation strategy of 2D semiconductors to implement practical photocatalysis. It operates electronic structures of dimensionally paradoxical 2D semiconductors and spatially limited nD (n=0-2) guests, directs charge migration processes, mass-produces advanced catalysts and elucidates time-evolved catalysis. Synergic impacts crossing 2D-nD will lead to > 95%/hour rates for pollutant removal and >20% quantum efficiencies for H2 evolution under visible light. CATCH enumerates chemical coordination and writes reaction equations with sub-nanosecond precision.
CATCH employs density functional theory optimization and data mining prediction to select most probable heterojunctional peers from hetero/homo- dimensions. Through facile but efficient wet and dry synthesis, nanostructures will be bonded to basal planes or brinks of 2D slabs. CATCH benefits in-house techniques for product characterizations and refinements and emphasizes on cutting-edge in situ studies to unveil photocatalysis at advanced photon sources. Assisted with theoretical modelling, ambient and time-evolved experiments will illustrate photocatalytic dynamics and kinetics in mixed spacetime.
CATCH unites low-dimensional materials designs by counting physical and electronic merits from spacetime confinements. It metrologically elaborates photocatalysis in an elevated 2D+nD+t, alters passages of materials combinations crossing dimensions, and directs future photocatalyst designs. Standing on cross-dimensional materials innovation and photocatalysis study, CATCH breaks the deadlock of practical photocatalysis that eventually leads to sustainability.