Statistical physics is a theory allowing the derivation of the statistical behavior of macroscopic systems from the description of the interactions of their microscopic constituents. For more than a century, lattice models (i.e. r...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PTRELSS
Phase transitions in random evolutions of large scale struct...
1M€
Cerrado
COMPASP
Complex analysis and statistical physics
2M€
Cerrado
PTRCSP
Phase Transitions in Random Constraint Satisfaction Problems
1M€
Cerrado
FIS2009-13730-C02-01
ESTUDIO DE LA RELACION TOPOLOGIA-FUNCIONALIDAD EN REDES COMP...
68K€
Cerrado
Información proyecto CriBLaM
Duración del proyecto: 75 meses
Fecha Inicio: 2017-10-20
Fecha Fin: 2024-01-31
Líder del proyecto
EIT MANUFACTURING ASBL
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Statistical physics is a theory allowing the derivation of the statistical behavior of macroscopic systems from the description of the interactions of their microscopic constituents. For more than a century, lattice models (i.e. random systems defined on lattices) have been introduced as discrete models describing the phase transition for a large variety of phenomena, ranging from ferroelectrics to lattice gas.
In the last decades, our understanding of percolation and the Ising model, two classical exam- ples of lattice models, progressed greatly. Nonetheless, major questions remain open on these two models.
The goal of this project is to break new grounds in the understanding of phase transition in statistical physics by using and aggregating in a pioneering way multiple techniques from proba- bility, combinatorics, analysis and integrable systems. In this project, we will focus on three main goals:
Objective A Provide a solid mathematical framework for the study of universality for Bernoulli percolation and the Ising model in two dimensions.
Objective B Advance in the understanding of the critical behavior of Bernoulli percolation and the Ising model in dimensions larger or equal to 3.
Objective C Greatly improve the understanding of planar lattice models obtained by general- izations of percolation and the Ising model, through the design of an innovative mathematical theory of phase transition dedicated to graphical representations of classical lattice models, such as Fortuin-Kasteleyn percolation, Ashkin-Teller models and Loop models.
Most of the questions that we propose to tackle are notoriously difficult open problems. We believe that breakthroughs in these fundamental questions would reshape significantly our math- ematical understanding of phase transition.