The Large Hadron Collider (LHC), a 7 + 7 TeV proton-proton collider under completion at CERN, the European Laboratory for Particle Physics in Geneva, will take experiments into a new energy domain beyond the Standard Model of stro...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EWBGANDLHC
Electroweak Baryogenesis in the Era of the LHC
222K€
Cerrado
PID2021-124704NB-I00
FISICA MAS ALLA DEL MODELO ESTANDAR Y COSMOLOGIA DEL UNIVERS...
90K€
Cerrado
PDF4BSM
Parton Distributions in the Higgs Boson Era
1M€
Cerrado
BSMFLEET
Challenging the Standard Model using an extended Physics pro...
1M€
Cerrado
NSFLHC
New Strong Forces at the Large Hadron Collider
158K€
Cerrado
FPA2015-70479-P
DESFIANDO AL MODELO ESTANDAR CON UN NUEVO PROGRAMA DE FISICA...
45K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The Large Hadron Collider (LHC), a 7 + 7 TeV proton-proton collider under completion at CERN, the European Laboratory for Particle Physics in Geneva, will take experiments into a new energy domain beyond the Standard Model of strong and electroweak interactions. As the LHC will unveil the mysteries of the electroweak symmetry breaking, this will also have far-reaching implications for cosmology. The aim of this project is to work out what we may learn about the Early Universe from discoveries at the LHC. This concerns in particular the two fundamental questions of the nature of the Dark Matter and the origin of the matter-antimatter asymmetry of the Universe. The LHC-Cosmology interplay has been a topic of active research in the last years. However, studies have essentially focussed on a single class of models: supersymmetry. The original and innovative directions of this project are: 1) To investigate dark matter particle physics models that have not been explored yet and confront theoretical predictions with existing and upcoming observational constraints. Measuring the properties of the dark matter will require a complementarity between the LHC searches and the other numerous ongoing dark matter experiments such as gamma ray telescopes, neutrino telescopes, cosmic positron detectors ... etc. 2) To work out the details of the electroweak phase transition in extensions of the Standard Model. One of the best-motivated mechanism for generating the baryon asymmetry of the universe relies on a first-order electroweak phase transition. Interestingly, this has strong implications for Gravity Wave physics. We will explore thoroughly how the planned gravity wave detector and space interferometer LISA, which turns out to be a completely independent window on the electroweak scale, could complement the information provided by the LHC. This project will also serve as a solid basis for future research at the Internatinal electron-positron Linear Collider.