Descripción del proyecto
In the aftermath of the high-precision Planck and BICEP2 experiments, cosmology has undergone a critical transition. Before 2014, most breakthroughs came as direct results of improved detector technology and increased noise sensitivity. After 2014, the main source of uncertainty will be due to astrophysical foregrounds, typically in the form of dust or synchrotron emission from the Milky Way. Indeed, this holds as true for the study of reionization and the cosmic dawn as it does for the hunt for inflationary gravitational waves. To break through this obscuring veil, it is of utmost importance to optimally exploit every piece of available information, merging the world's best observational data with the world's most advanced theoretical models. A first step toward this ultimate goal was recently published as the Planck 2015 Astrophysical Baseline Model, an effort led and conducted by myself.
Here I propose to build Cosmoglobe, a comprehensive model of the radio, microwave and sub-mm sky, covering 100 MHz to 10 THz in both intensity and polarization, extending existing models by three orders of magnitude in frequency and a factor of five in angular resolution. I will leverage a recent algorithmic breakthrough in multi-resolution component separation to jointly analyze some of the world's best data sets, including C-BASS, COMAP, PASIPHAE, Planck, SPIDER, WMAP and many more. This will result in the best cosmological (CMB, SZ, CIB etc.) and astrophysical (thermal and spinning dust, synchrotron and free-free emission etc.) component maps published to date. I will then use this model to derive the world's strongest limits on, and potentially detect, inflationary gravity waves using SPIDER observations; forecast, optimize and analyze observations from the leading next-generation CMB experiments, including LiteBIRD and S4; and derive the first 3D large-scale structure maps from CO intensity mapping from COMAP, potentially opening up a new window on the cosmic dawn.