Correlative Super Resolution Imaging of the Collagen Mineralization Process
Bone tissue is an organic-inorganic composite material that provides the mechanical support and protection for our bodies. Its impressive mechanical properties arise from the hierarchical organization of the organic collagen matri...
Bone tissue is an organic-inorganic composite material that provides the mechanical support and protection for our bodies. Its impressive mechanical properties arise from the hierarchical organization of the organic collagen matrix that is mineralized with ultrathin, aligned inorganic crystals of carbonated hydroxyapatite.
Despite its importance to the human body, still relatively little is understood about the mechanisms by which collagen mineralization occurs, and what the respective roles are of the collagen and other, non-collagenous proteins (NCPs) in directing this process. This is because the process is complex: there are different stages that occur over multiple length scales, and many different components are involved. So far, studying collagen mineralization has mainly relied on analyses that require sample-altering preparation methods and lack information about the dynamics; or on simplified in vitro systems that do not necessarily represent what happens in the native bone environment. To really understand the role of NCPs in collagen mineralization, we need to study their dynamics and structural interactions with the highest possible resolution and in an environment as close as possible to native bone.
I will use a recently developed tissue engineering platform that produces mineralized collagen with the main characteristics of that in bone. This will now allow me to apply gene editing for studying the role of NCPs in situ and in a living system with correlative imaging using super resolution microscopy and cryogenic transmission electron microscopy. My approach will provide unprecedented details on the role of selected NCPs in collagen mineralization. It will significantly impact how bone defects and mineralization are studied, and open the door to new treatments for related diseases such as osteogenesis imperfecta and Ehlers-Danlos syndrome.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.