Electron and Ion beams have become indispensable tools in surface and materials science. Many applications rely on extreme miniaturization, like in nanostructuring and doping, which imposes to control the energy, the number and th...
Electron and Ion beams have become indispensable tools in surface and materials science. Many applications rely on extreme miniaturization, like in nanostructuring and doping, which imposes to control the energy, the number and the locations of electrons or ions at the nanometric level. The CITRON project aims at achieving breakthroughs in focused ion and electron beams, exploiting monochromaticity in the low-energy domain (eV-keV) to reach such a fine level of control of the sources of charged particles. In contrast with standard tools, the proposed developments rely on the ionization of a neutral atomic species and on the simultaneous production, detection and control of both the ion and the electron. Such a detection in coincidence yields correlated information on both particles that can be used to improve the beam properties, like the deterministic knowledge of the creation of the charged particles, and the correction of their trajectories in real time. Using this novel technique, which I have recently demonstrated the feasibility with my group, I propose to develop three innovative prototypes:
• 1) A focused ion beam using feedback control with unprecedented focused properties. I will used it to realize semiconductor circuit-editing at the (sub-)nm scale.
• 2) A deterministic source of (potentially) any type of ion for controlled implantation at the nm level. I will use it for on-demand doping of quantum devices.
• 3) A high-resolution electron-energy-loss microscope with precise knowledge of the electron energy and the position on the sample. I will use it to realize both imaging and vibrational spectroscopy for surface analysis.
The synergy between the three prototypes is based on atomic beam laser excitation to create a monoenergetic beam of charged particles, with energy and position controlled by correlation between oppositely charged particles. All will require dedicated optical columns designs and fast time and position sensitive detectors.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.