Electron and Ion beams have become indispensable tools in surface and materials science. Many applications rely on extreme miniaturization, like in nanostructuring and doping, which imposes to control the energy, the number and th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EUIN2017-85957
CAMPOS ELECTRICOS PARA MEJORAR LA IMAGEN EN MICROSCOPIA ELEC...
9K€
Cerrado
EQC2021-007410-P
Microscopio de barrido basado en haces focalizados de iones...
2K€
Cerrado
AQDtive
Toward active nanophotonic using colloidal quantum dots
3M€
Cerrado
EQC2021-007544-P
Nanolitografía de ultra alta resolución por haz de electrone...
1K€
Cerrado
MAT2012-36580
NANOSCOPIA Y NANOFOTONICA DE LUZ INFRARROJA BASADAS EN ANTEN...
146K€
Cerrado
PGC2018-096788-B-I00
INTERACCION DE ELECTRONES DE BAJA ENERGIA CON NANOSISTEMAS
35K€
Cerrado
Información proyecto CITRON
Duración del proyecto: 64 meses
Fecha Inicio: 2022-08-12
Fecha Fin: 2027-12-31
Descripción del proyecto
Electron and Ion beams have become indispensable tools in surface and materials science. Many applications rely on extreme miniaturization, like in nanostructuring and doping, which imposes to control the energy, the number and the locations of electrons or ions at the nanometric level. The CITRON project aims at achieving breakthroughs in focused ion and electron beams, exploiting monochromaticity in the low-energy domain (eV-keV) to reach such a fine level of control of the sources of charged particles. In contrast with standard tools, the proposed developments rely on the ionization of a neutral atomic species and on the simultaneous production, detection and control of both the ion and the electron. Such a detection in coincidence yields correlated information on both particles that can be used to improve the beam properties, like the deterministic knowledge of the creation of the charged particles, and the correction of their trajectories in real time. Using this novel technique, which I have recently demonstrated the feasibility with my group, I propose to develop three innovative prototypes:
• 1) A focused ion beam using feedback control with unprecedented focused properties. I will used it to realize semiconductor circuit-editing at the (sub-)nm scale.
• 2) A deterministic source of (potentially) any type of ion for controlled implantation at the nm level. I will use it for on-demand doping of quantum devices.
• 3) A high-resolution electron-energy-loss microscope with precise knowledge of the electron energy and the position on the sample. I will use it to realize both imaging and vibrational spectroscopy for surface analysis.
The synergy between the three prototypes is based on atomic beam laser excitation to create a monoenergetic beam of charged particles, with energy and position controlled by correlation between oppositely charged particles. All will require dedicated optical columns designs and fast time and position sensitive detectors.