Correcting for self: The impact of head motion on visual processing and behaviou...
An organism’s survival depends on accurately perceiving and interpreting the environment. A significant part of our visual stimulations is however generated by our own actions, rather than external events. For example, the retina...
An organism’s survival depends on accurately perceiving and interpreting the environment. A significant part of our visual stimulations is however generated by our own actions, rather than external events. For example, the retina can experience similar visual stimulus driven by head-movement, or by a moving object. Therefore, self-motion related information is fundamental to contextualize visual stimuli. In other words, what the eye sees may not be what our brain perceives depending on our actions. In mammals, the vestibular system reports both the motion and orientation of the head. Very little is known about the pathways connecting the vestibular system to visual cortical areas, and how this signal is integrated with external visual stimuli to ultimately impact behaviour. The goal of this project is to unravel the neuronal circuits underlying visual processing during self-motion in mice, thereby providing new insights in sensory processing. To this aim, I will address the following questions: 1) What is the long-range and local connectivity of neurons modulated by head rotation in V1; 2) What are the circuit mechanisms and neuronal computations involved in the integration of self-motion related signals with visual inputs in V1; 3) How do head motion inputs to V1 influence visually-guided actions during behaviour. Achieving these goals relies on a multidisciplinary experimental strategy based on cutting-edge approaches to monitor and control circuit activity with high spatio-temporal resolution in a cell-type specific manner, neuroanatomical tracing, and computational modelling. This experimental strategy combined with my research background in visual and vestibular systems provides a unique opportunity to understand unexplored aspects of sensory processing, at both the cellular and systems levels. Altogether, this project will reveal a novel framework to understand how sensory processing operates during self-motion to guide behaviour.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.