PALEOCORE will provide the first comprehensive observational constraints on the dynamics of Earth’s core on multi-centennial to millennial timescales. Such constraints are essential to understand the core processes responsible for...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2013-41860-P
MODELO INTERDISCIPLINARIO Y DINAMICO PARA EL NUCLEO INTERNO...
36K€
Cerrado
UBEICH
Unravelling the first Babbles of the Earth Inner Core Histor...
2M€
Cerrado
PGC2018-099103-A-I00
CANDIDATO ESPAÑOL PARA CAMPO GEOMAGNETICO DE REFERENCIA INTE...
61K€
Cerrado
ESP2017-88930-R
DESARROLLO DE INSTRUMENTACION MAGNETICA PARA LA INVESTIGACIO...
672K€
Cerrado
HolyEarth
A holistic approach to understand Earth formation
3M€
Cerrado
RYC-2014-14970
Magnetohydrodynamic Seismology of the Solar Atmosphere
309K€
Cerrado
Información proyecto PALEOCORE
Duración del proyecto: 62 meses
Fecha Inicio: 2023-12-06
Fecha Fin: 2029-02-28
Líder del proyecto
LUNDS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
PALEOCORE will provide the first comprehensive observational constraints on the dynamics of Earth’s core on multi-centennial to millennial timescales. Such constraints are essential to understand the core processes responsible for the rapid decay of Earth’s dipole field strength over the past century and to forecast future field changes.
Generated through convective motions in the liquid iron core, Earth’s magnetic field acts as a shield against harmful cosmic radiation and plays a crucial role for the habitability of our planet. The past two decades of satellite monitoring of the magnetic field, in combination with major advancements in numerical simulations of the geodynamo, have generated a wealth of knowledge on relatively rapid processes in the core. However, due to the lack of reference data with adequate resolution, the dynamics of the core on timescales longer than the convective overturn time (~130 years) are still poorly understood. Observational constraints of core dynamics on these timescales are crucial to evaluate proposed driving mechanisms of the geodynamo.
Through recent technical innovations, models based on indirect paleomagnetic observations of Earth’s magnetic field are providing information on past field changes with unprecedented resolution. These models suggest that the recent dipole decay is part of a millennial-scale recurrent pattern associated with weak field anomalies, like the present-day South Atlantic Anomaly. The aim of PALEOCORE is to construct the first ever integrated core-field core-flow model over millennial timescales to study such ancient analogues and reveal the underlying core dynamics responsible for driving these changes. This will be achieved through a combination of (i) strategic paleomagnetic data acquisition and key modelling innovations (solving bottlenecks in the current approach), (ii) incorporation of independent radionuclide data and (iii) adaptation of data assimilation algorithms for paleomagnetic data.