PALEOCORE will provide the first comprehensive observational constraints on the dynamics of Earth’s core on multi-centennial to millennial timescales. Such constraints are essential to understand the core processes responsible for...
ver más
Descripción del proyecto
PALEOCORE will provide the first comprehensive observational constraints on the dynamics of Earth’s core on multi-centennial to millennial timescales. Such constraints are essential to understand the core processes responsible for the rapid decay of Earth’s dipole field strength over the past century and to forecast future field changes.
Generated through convective motions in the liquid iron core, Earth’s magnetic field acts as a shield against harmful cosmic radiation and plays a crucial role for the habitability of our planet. The past two decades of satellite monitoring of the magnetic field, in combination with major advancements in numerical simulations of the geodynamo, have generated a wealth of knowledge on relatively rapid processes in the core. However, due to the lack of reference data with adequate resolution, the dynamics of the core on timescales longer than the convective overturn time (~130 years) are still poorly understood. Observational constraints of core dynamics on these timescales are crucial to evaluate proposed driving mechanisms of the geodynamo.
Through recent technical innovations, models based on indirect paleomagnetic observations of Earth’s magnetic field are providing information on past field changes with unprecedented resolution. These models suggest that the recent dipole decay is part of a millennial-scale recurrent pattern associated with weak field anomalies, like the present-day South Atlantic Anomaly. The aim of PALEOCORE is to construct the first ever integrated core-field core-flow model over millennial timescales to study such ancient analogues and reveal the underlying core dynamics responsible for driving these changes. This will be achieved through a combination of (i) strategic paleomagnetic data acquisition and key modelling innovations (solving bottlenecks in the current approach), (ii) incorporation of independent radionuclide data and (iii) adaptation of data assimilation algorithms for paleomagnetic data.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.