Cooperative Nickel Catalysts for CO2 Hydrogenation to Value-Added Products
Catalytic hydrogenation of CO2 using H2 produced with renewable energy is a promising approach for the sustainable production of value-added chemicals such as formic acid or methanol. Molecular catalysts based on transition metals...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-101604-B-I00
DISEÑO DE CATALIZADORES DE METALES NO NOBLES COMBINADOS CON...
143K€
Cerrado
PID2019-104427RB-I00
NUEVAS ESTRATEGIAS CATALITICAS PARA LA UTILIZACION EFICIENTE...
169K€
Cerrado
ENERGYBIOCATALYSIS
Understanding and Exploiting Biological Catalysts for Energy...
1M€
Cerrado
MEXCAT
Metal EXsolved CATalysts for the CO2 valorisation to methano...
173K€
Cerrado
LAURELIN
Selective CO2 conversion to renewable methanol through innov...
5M€
Cerrado
PRE2019-087627
DISEÑO RACIONAL DE NUEVOS CATALIZADORES HETEROGENEOS, ELECTR...
98K€
Cerrado
Información proyecto NiCO2Cat
Duración del proyecto: 28 meses
Fecha Inicio: 2023-04-21
Fecha Fin: 2025-08-31
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
203K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Catalytic hydrogenation of CO2 using H2 produced with renewable energy is a promising approach for the sustainable production of value-added chemicals such as formic acid or methanol. Molecular catalysts based on transition metals have demonstrated potential for selective CO2 hydrogenation reactions. However, most efficient catalysts for methanol production are based on scarce metals such as ruthenium. The proposed research aims towards the development of an efficient, cost-effective, potentially scalable nickel-based catalytic system for CO2 reduction with molecular hydrogen to produce industrially relevant compounds such as formic acid/methanol. To this end, I will develop nickel/olefin pincer complexes, which have recently been shown to activate H2 via a new cooperative mechanism and are therefore strong candidates for CO2 hydrogenation. The new complexes will be evaluated for their catalytic performance by using various instrumentation techniques. Experiments supported by theoretical DFT calculations will shed light on the mechanism of the reaction. A successful project will afford both new, efficient catalysts for CO2 hydrogenation based on the earth-abundant element nickel and mechanistic understanding to guide further developments on the longer term.