Converged Heterogeneous Advanced 5G Cloud RAN Architecture for Intelligent and S...
Converged Heterogeneous Advanced 5G Cloud RAN Architecture for Intelligent and Secure Media Access
CHARISMA proposes an intelligent hierarchical routing and paravirtualised architecture that unites two important concepts: devolved offload with shortest path nearest to end-users and an end-to-end security service chain via virtu...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto CHARISMA
Duración del proyecto: 30 meses
Fecha Inicio: 2015-06-10
Fecha Fin: 2017-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
CHARISMA proposes an intelligent hierarchical routing and paravirtualised architecture that unites two important concepts: devolved offload with shortest path nearest to end-users and an end-to-end security service chain via virtualized open access physical layer security (PLS). The CHARISMA architecture meets the goals of low-latency (<1ms) and security required for future converged wireless/wireline advanced 5G networking. This provides a cloud infrastructure platform with increased spectral and energy efficiency and enhanced performance targeting the identified needs for 1000-fold increased mobile data volume, 10-100 times higher data rates, 10-100 times more connected devices and 5x reduced latency.
Fully aligned and committed to the 5G-PPP principles and KPIs, the CHARISMA proposal brings together 10G-wireless (via mm-wave/60-GHz & free-space optics, FSO) access and 100G fixed optical (OFDM-PON) solutions through an intelligent cloud radio-access-network (C-RAN) and intelligent radio remote head (RRH) platform with IPv6 Trust Node routing featuring very low-latency for the traffic management. Low-cost Ethernet is used across front- and backhaul, and end-user equipment (vCPE), and intelligence distributed across the back-, front-hauls, and perimetric data transports. Ad-hoc mobile device interconnectivities (D2D, D2I, C2C etc.), content delivery network (CDN) and mobile distributed caching (MDC) offer an energy-efficient (better than x20 improvement possible) information-centric networking (ICN) architecture. Furthermore, caching will provide efficient utilization of scarce resources by early aggregating data or/and by executing communication locally.
The CHARISMA approach will benefit user experiences with ground-breaking low-latency services, high-bandwidth, and mobile cloud resilient network security.