Controlling delocalisation and funnelling of excited state energy in the strong...
Controlling delocalisation and funnelling of excited state energy in the strong coupling regime in molecular systems
A fundamental physical property of A fundamental physical property of matter is its ability to interact with light. This is not only the basis of fascinating concepts like seeing colours, but also the foundation of life and advanc...
ver más
FIS2012-30625
EFECTOS CUANTICOS EN LA TRANSFERENCIA DE ENERGIA EN SISTEMAS...
34K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
A fundamental physical property of A fundamental physical property of matter is its ability to interact with light. This is not only the basis of fascinating concepts like seeing colours, but also the foundation of life and advanced technologies. Yet, some basic physical laws hamper possible utilisations. It is therefore of great importance to examine how to bend these laws, how to bypass them and by so doing open up new opportunities for novel applications. This is exactly what this project aims to do.
Plant leaves are green because they absorb visible light. However, it is less known that this light-matter interaction can be enhanced to the point where it is so strong that the photon and molecule cannot be regarded as separate entities, but as a combined system with unique properties. Nature uses strong pigment-pigment interactions to rapidly funnel absorbed sunlight to the photosynthetic reaction centre. However, up to now, organic solar cells do not take advantage of such quantum processes to enhance light to electricity conversion.
In CONTROL, I will use a chemical viewpoint to develop unique molecules optimised for strong light-matter interactions, and with these examine excited state processes of strongly coupled systems. My aim is to funnel excitation energy to charge transfer states in an organic heterojunction using the delocalised nature of hybrid light-matter states. This interaction enables transport of excitation energy over distances much longer than have been previously considered feasible. Using time-resolved optical spectroscopy and photoconductivity, I will systematically analyse the interaction between delocalised hybrid states and localised charge transfer states, allowing design criteria to be formulated. The outcome of this research program will be the description and mechanistic revelation of a novel quantum physical phenomenon that can enable development of organic solar cells from simple layered structures with unprecedented efficiencies.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.