Control of meiotic recombination from Arabidopsis to crops
Global population stands at 7 billion and is predicted to reach 9 billion by 2050. It is anticipated that food production will need to increase by at least 50% to meet the demand arising from this increase in population. This will...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MEICOM
Meiotic Control of Recombination in Crops
3M€
Cerrado
LANDRACES
Exploiting the legacy of Central European wheat landraces fo...
146K€
Cerrado
EMPHASIS-GO
Bringing EMPHASIS to operation: European Infrastructure for...
1M€
Cerrado
EMPHASIS-GO
Bringing EMPHASIS to operation: European Infrastructure for...
1M€
Cerrado
HARNESSTOM
Harnessing the value of tomato genetic resources for now and...
8M€
Cerrado
PID2020-114952RR-I00
COMBINANDO TECNOLOGIAS DE SECUENCIACION Y GENOTIPADO DE BAJO...
278K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Global population stands at 7 billion and is predicted to reach 9 billion by 2050. It is anticipated that food production will need to increase by at least 50% to meet the demand arising from this increase in population. This will require a sustained improvement in crop yield. The nature of this challenge is exacerbated by the likely impact of climate change. These factors combine to make Food Security one the key challenges for the 21st century. To deliver improvement and sustainability in crop production it will be necessary to harness a broad spectrum approaches. Crop improvement will be crucial and a major part in the delivery of this will be based on classical breeding. This harnesses the genetic variation that is generated by homologous recombination during meiosis. Meiotic recombination creates new combinations of alleles that confer new phenotypes that can be tested for enhanced performance. It is also crucial in mapping genetic traits and in the introgression of new traits from sources such as wild-crop varieties. Despite the central role played by meiosis in crop production we are remarkably ignorant as to how the process is controlled in these species. For example, it is not known why recombination in cereals and forage grasses is skewed towards the ends of the chromosomes such that an estimated 30-50% of genes rarely, if ever, recombine thereby limiting the genetic variation that is available to plant breeders. Moreover, as many crop species are polyploid a further level of complexity is added to the meiotic process. Over the past 15 years studies in Arabidopsis, many conducted in the laboratories in the COMREC consortium, have provided both insights into the control of meiosis in plants and generated the tools to analyze this process in crop species. It is now timely, to translate this knowledge, training a new generation of young scientists who will gain the expertise to understand and develop strategies to modify recombination in crops.