Control exchange-coupling Interactions in poRphyrin-based Quantum logIc gaTes
"The role of quantum computing in simulating quantum and complex systems (e.g., molecular and biological systems) is central to the ""second quantum revolution"", generating enormous investments of industrial companies (e.g., IBM,...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
AndQC
Andreev qubits for scalable quantum computation
4M€
Cerrado
PCI2018-093116
ESCALADO DE COMPUTACION CUANTICA CON ESPINES MOLECULARES
141K€
Cerrado
PCI2018-093438
ESCALADO DE COMPUTACION CUANTICA CON ESPINES MOLECULARES
12K€
Cerrado
LINKQUBITS
Assembling molecular components for future quantum devices
231K€
Cerrado
NOTICE
Novel Oxides and Topological Interfaces for quantum Computin...
2M€
Cerrado
PCI2018-093106
ESCALADO DE COMPUTACION CUANTICA CON ESPINES MOLECULARES
20K€
Cerrado
Información proyecto CIRQuIT
Duración del proyecto: 28 meses
Fecha Inicio: 2024-04-08
Fecha Fin: 2026-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The role of quantum computing in simulating quantum and complex systems (e.g., molecular and biological systems) is central to the ""second quantum revolution"", generating enormous investments of industrial companies (e.g., IBM, Google, etc.) and EU members. Current technologies are mainly based on solid-state fundamental units, i.e., the qubits, whose working principles rely on superconductivity or electron/nuclear spin physics. Beyond them, molecular systems based on magnetic compounds are attracting specific interest in the community. By exploiting the versatility of molecular systems and the infinite possibilities enabled by synthetic chemistry, it is possible to engineer the systems' physical and chemical properties. For instance, several qubits can be interconnected within a single structure through organic and coordination chemistry approaches, thus improving more complex structures for implementing advanced quantum logical operations (i.e., quantum logic gates). The CIRQUiT project aims to go beyond the current state-of-the-art molecular quantum logical units by introducing molecular machines for quantum information processing. The three main ingredients of this project are: i) organic and coordination chemistry, ii) light, and iii) magnetism. Two molecular qubits will be anchored to a central diamagnetic photochromic unit acting as a switch of magnetic interactions. The differences in magnetic anisotropy properties of the two qubits will keep them distinguishable and manipulable through microwave pulses. By exploiting cyclization and cycloversion reactions of the photochromic core (enabled by continuous or pulsed irradiation with UV and Vis light sources, respectively), it will be possible to switch exchange coupling interactions between side units. In this way, the two qubits can act as individual units when uncoupled and as quantum logic gates ""on demand"", mimicking the workflow of a quantum circuit."