Contrast Agents for Protontherapy PET Range Monitoring
In radiation therapy, proton therapy has a more favourable dose distribution than conventional radiotherapy with photons and electrons. However, in order to fully exploit this dosimetric advantage, it would be required to verify t...
ver más
SEDECAL MOLECULAR IMAGING
La fabricación, investigación y desarrollo, comercialización, instalación y mantenimiento de dispositivos de imagen molecular médica
TRL
4-5
| 211K€
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo H2020 notifico la concesión del proyecto
el día 2020-11-30
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
iMPACT
innovative Medical Protons Achromatic Calorimeter and Tracke...
2M€
Cerrado
PDC2022-133382-I00
PROTON RANGE AND IMAGING DEVICE FOR PROTONTHERAPY
150K€
Cerrado
PID2021-127902OB-C22
SIMULACIONES MONTE CARLO E INTELIGENCIA ARTIFICIAL PARA VERI...
121K€
Cerrado
GNVISION
Gamma-Neutron Vision aimed at improved cancer treatments in...
150K€
Cerrado
PROTONSPOTSCANMET
Improving physical dosimetry and developing biologically rel...
250K€
Cerrado
Información proyecto CAPPERAM
Duración del proyecto: 32 meses
Fecha Inicio: 2018-03-08
Fecha Fin: 2020-11-30
Líder del proyecto
SEDECAL MOLECULAR IMAGING
La fabricación, investigación y desarrollo, comercialización, instalación y mantenimiento de dispositivos de imagen molecular médica
TRL
4-5
| 211K€
Presupuesto del proyecto
170K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In radiation therapy, proton therapy has a more favourable dose distribution than conventional radiotherapy with photons and electrons. However, in order to fully exploit this dosimetric advantage, it would be required to verify the range of protons in the patient with mm accuracy. The most used strategy for in-vivo range verification in protontherapy relies on positron emission tomography (PET) activation. As they progress through the patient, proton beams undergo nuclear reactions than can produce radioactive isotopes, some of which are positron-emitters. This induced radiactivity can be detected in commercial or dedicated PET scanners and used to deduce the delivered dose distribution in the patient.
While a promising technique, two main challenges have so far limited its clinical implementation: first, the proton interaction cross sections of the elements making up the body (C, O, N, H) are relatively low, which causes the positron dissintegration counts detected by the PET scanners to be about 1 or 2 orders of magnitude lower than the usual numbers in nuclear medicine. And second, the spatial and temporal distributions of PET emitters follow a very complex relation with the dose depositions which complicate the range verification process.
The CAPPERAM project aims at solving these two problems by using Zn-based contrast agents in the patient during irradiation. Zn has a very high cross section for proton interaction peaking at very low proton energies, which produces a very high concentration of PET emitters near the end of the proton range.
The action, comprising both computational simulations and phantom experiments, will take place in Sedecal Molecular Imaging, a company dedicated to the fabrication of high-precision PET devices, with a 6-month secondment at the group of Nuclear Physics of the Complutense University in Madrid, which specializes in applications of experimental nuclear physics to medical imaging.