Contextual Radio Cues for Enhancing Decision Making in Networks of Autonomous Ag...
The CUE-GO project aims to conceive a novel methodological framework for enhancing the decision-making capabilities of autonomous agents through the exploitation of contextual radio cues of the environment. Radio cues represent a...
The CUE-GO project aims to conceive a novel methodological framework for enhancing the decision-making capabilities of autonomous agents through the exploitation of contextual radio cues of the environment. Radio cues represent a quantum leap from the traditional concept of features, usually retrieved by vision-based systems, as they contain electromagnetic information with semantic meanings (contextual) enabled by radio-frequency sensors, like those at TeraHertz bands. The elaboration of contextual radio cues allows a far-reaching prediction of the outcomes of agents’ behaviors and ultimately yields a more efficient navigation in social environments, more accurate localization of people and objects, and enhanced cooperation toward a common mission goal. In interpreting contextual radio cues, agents exchange their sensed information in a way that considers other agents’ expertise, i.e., their abilities to process environmental stimuli.
To achieve this vision, I will: (1) develop a general framework for the decision-making of autonomous agents that emulates the human capability of interpreting cues for anticipating an action’s course; (2) conceive and design methods for extrapolating contextual radio cues based on high-resolution semantic mapping of the environment; (3) conceive and design cue-guided localization and navigation algorithms that will boost ambient awareness; (4) conceive new methods and metrics to assess the agents’ skills in associating contextual radio cues with statistical models that accurately predict future rewards or punishments; (5) develop collaboration schemes accounting for the assessment of agents’ expertise.
Thanks to a multidisciplinary approach, combining diverse knowledge from behavioral neuroscience to engineering, this project will lead to a significant advance in human-inspired decision-making for future networks of autonomous agents, toward a society where humans and artificial intelligence co-exist in the same environment.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.