Contact-induced blade-casing interactions in aero-engine turbines - An integrate...
Contact-induced blade-casing interactions in aero-engine turbines - An integrated simulation framework for local and global nonlinearities
Gas turbines play a vital role in terms of energy and mobility in 21st century. Accurate simulation tools are mandatory to increase competitiveness by increasing safety and reducing development costs.
The growing tendency of desig...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DPI2009-14216
ANALISIS DE PROBLEMAS AEROELASTICOS EN TURBOMAQUINARIA MEDIA...
44K€
Cerrado
BES-2010-037891
ANALISIS DE PROBLEMAS AEROELASTICOS EN TURBOMAQUINARIA MEDIA...
43K€
Cerrado
DPI2013-46403-R
NUEVAS TECNICAS PARA EL ANALISIS DE PROBLEMAS DE VIBRACIONES...
133K€
Cerrado
A2-NET-TEAM
Advanced Aircraft Network for Theoretical Experimental Aer...
139K€
Cerrado
PTQ-12-05101
Optimización de la fiabilidad frente a fatiga de estructuras...
66K€
Cerrado
VibSEA
SEA Applied to the Prediction of High Frequency Vibrations i...
848K€
Cerrado
Información proyecto BC-Int
Duración del proyecto: 26 meses
Fecha Inicio: 2022-07-01
Fecha Fin: 2024-09-30
Líder del proyecto
POLITECNICO DI TORINO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
189K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Gas turbines play a vital role in terms of energy and mobility in 21st century. Accurate simulation tools are mandatory to increase competitiveness by increasing safety and reducing development costs.
The growing tendency of designers to increase the efficiency of turbines has led to reduced operating clearances between rotating and static components and consequently frequent structural contact during operation. On top of that, the design tendency to reductions in fuel burn, noise and emissions makes the structural components lighter, slenderer and under greater excitation which increases their geometrically nonlinear behavior.
Reliable analysis of the dynamic response of a turbine during blade-casing contact-induced interactions is of great importance due to its impact on fatigue life or potential catastrophic failure.
The project aims at developing a validated numerical tool to predict the vibration due to blade-casing interactions. High computational efficiency will be granted by a nonlinear model order reduction technique able to handle both contact (local) and geometric (global) nonlinearities.
The numerical predictive tool will be experimentally validated, taking advantage of the experimental equipment available at the host institution.
The BC-Ints project aims at developing and validating mathematical and numerical models where both local and global nonlinearities are taken into account for an accurate prediction of the dynamic behaviour of rotors in case of blade-casing interactions.