Constructing functional polyolefins through an iron catalyzed one-pot POLYmeriza...
Constructing functional polyolefins through an iron catalyzed one-pot POLYmerization FUNctionalization strategy
We are in an era of demand for new, high-performance and sustainable plastics. The challenge is to counterbalance the actual need of society for disposable devices without compromising the sustainability of the overall production....
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2011-24823
POLIESTERES Y POLIURETANOS FUNCIONALIZADOS CON PROPIEDADES M...
160K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We are in an era of demand for new, high-performance and sustainable plastics. The challenge is to counterbalance the actual need of society for disposable devices without compromising the sustainability of the overall production. Within the polymer field, polyolefins account for more than 50% of global plastics demand. However, their main drawback is represented by their hydrophobicity and their poor applicability in blending, adhesion and dyeing due to a lack of functional groups. In this regard, one fundamental challenge is to develop a new strategy that combines polymer synthesis and the incorporation of polar moieties into polyolefins. Within this context, POLYFUN seeks to deliver functional polyolefins by employing a single iron-based catalyst to perform two subsequent catalytic steps in a one-pot strategy. This approach, although being an important tool at the molecular level, has not yet found any application in the polymer field to access materials with intriguing and robust properties in one single process. From a scientific and technological perspective, POLYFUN intends to fabricate functionalized polymers with tunable and unique properties with an innovative approach in the field. This project is highly interdisciplinary, involving different research areas such as organic chemistry, catalysis, and material science. As such, it is envisioned that the development of this new strategy can generate breakthrough scientific papers, valuable discoveries and/or potential patents. This fellowship brings a two-fold transfer of knowledge: advanced techniques in organic chemistry to the host institution and material chemistry to the fellow. Overall, the project’s multidisciplinarity and intersectoral nature will broaden the fellow’s competencies and will place her in a competitive position for her next career move.