Connecting Symmetric and Asymmetric Cryptography for Leakage and Faults
Symmetric & asymmetric cryptography offer the basic functionalities needed to communicate securely over a channel. Due to their different features and the different algebraic structures they exploit, the interaction between the de...
Symmetric & asymmetric cryptography offer the basic functionalities needed to communicate securely over a channel. Due to their different features and the different algebraic structures they exploit, the interaction between the design of these primitives and the security of their implementation against side-channel & fault attacks so far followed somewhat separated paths. Based on the observation that (i) many emerging challenges for the implementation security of symmetric & asymmetric primitives share similarities and would highly benefit from a more connected approach, and (ii) this is especially true when considering post-quantum asymmetric encryption schemes that include symmetric components and for which current designs are extremely challenging to protect against side-channel & faults attacks, the BRIDGE project aims to develop a unified treatment of symmetric & asymmetric cryptography by leveraging three innovative movements. First, we aim to export the concept of levelled implementation (where different parts of a primitive are protected with countermeasures of varying cost) from symmetric cryptography towards new post-quantum asymmetric schemes that inherently take implementation security as a design criteria. Second, we aim to export the use of larger (possibly prime) fields and more complex algebraic structures used in asymmetric cryptography to deliver advanced functionalities towards new symmetric schemes that guarantee security against side-channel & fault attacks in low-noise contexts that raise fundamental challenges for existing countermeasures. Third, we aim to exploit hard physical learning problems as radically new building blocks applicable to both types of primitives. By combining these movements, we aim to identify disruptive approaches to build new cryptographic schemes offering a better integration between symmetric & asymmetric designs and improvements of their implementation security by orders of magnitude.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.