Connecting Random Conformal Geometry and Teichmüller theory
Random conformal geometry deals with the analysis of conformally invariant systems using probabilistic methods. Random geometric objects, such as the random fractal SLE curves, arise from statistical mechanics models and are of ce...
Random conformal geometry deals with the analysis of conformally invariant systems using probabilistic methods. Random geometric objects, such as the random fractal SLE curves, arise from statistical mechanics models and are of central interest in modern probability theory and mathematical physics. Teichmüller theory as originally introduced studies complex structures on a surface. Teichmüller spaces carry a rich geometric structure and have been an important research topic since the mid-twentieth century. These two fields are traditionally far apart. However, via the introduction of the Loewner energy, the PI showed surprisingly that SLE is closely related to Weil-Petersson Teichmüller space and made the first contact between SLE theory and Teichmüller theory. Further developments exploring the link and recent progress in probabilistic Liouville conformal field theory also suggest that the connection between the two areas is stronger than currently known and we believe exploring the connection is of major scientific interest.
The ambition of this project is to break new ground in establishing links between fundamental concepts in random conformal geometry and Teichmüller theory by combining in a pioneering way techniques from probability, complex analysis, geometric analysis, Kähler geometry, spectral theory, and representation theory. We focus on three objectives:
1. Advance the understanding of the deep reason behind the link between SLE and the Kähler geometry of Weil-Petersson universal Teichmüller space.
2. Establish the link between Liouville actions and projective structures in a systematic way.
3. Identify the holography of Loewner energy and explore the uncharted territory of holographic principles of random conformal geometry.
The successful completion of this program will substantially reshape our understanding of both areas and has the potential to bring revolutionary development to them both.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.