ConfocAl Microscopy and real time Rheology of dynamIc hyroGels
Hydrogels cross-linked through supramolecular interactions are highly dependant on the dynamic charac- teristics of the physical cross-links. Few fundamental studies have been undertaken to quantitatively de- scribe structure-prop...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DisMolGels
Dissipative Self Assembly A powerful but unexplored tool to...
159K€
Cerrado
Nano4Bone
Engineering nanoparticle-polymer interactions to create inst...
2M€
Cerrado
FIS2015-70339-C2-2-R
HIDROGELES ACTIVOS ACTUADOS POR POLIMEROS BIOLOGICOS VIVOS:...
140K€
Cerrado
MAEROSTRUC
Multicomponent Aerogels with Tailored Nano Micro Macros...
1M€
Cerrado
RYC-2009-04036
Nuevos materiales auto-ensamblados sobre interfaces fluidas....
192K€
Cerrado
MAT2010-21494-C03-03
DESARROLLO Y CARACTERIZACION DE NANOCOMPUESTOS ELASTOMERICOS...
36K€
Cerrado
Información proyecto CAM-RIG
Duración del proyecto: 86 meses
Fecha Inicio: 2017-04-27
Fecha Fin: 2024-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Hydrogels cross-linked through supramolecular interactions are highly dependant on the dynamic charac- teristics of the physical cross-links. Few fundamental studies have been undertaken to quantitatively de- scribe structure-property relationships for these types of systems. Hydrogels formed from CB[8]-mediated supramolecular physical cross-linking mechanisms have gained significant interest on account of their excel- lent physical and mechanical properties such as self-healing and shear-thinning. This supramolecular motif has been further exploited to introduce and compatibilise a wide variety of different materials into hydrogel networks without phase separation, forming hybrid composite hydrogels attributed with unique and emergent properties. This proposal aims to pioneer the combination of several state-of-the-art characterisation tech- niques into an unique experimental setup (CAM-RIG), which will combine super-resolution and confocal microscopy imaging modalities with simultaneous strain-controlled rheological measurements to investigate fundamental structure-property relationships of these systems. For the first time it will be possible to decon- volute the molecular-level dynamics of the supramolecular physical cross-links from chain entanglement of the polymeric networks and understand their relative contributions on the resultant properties of the hydrogels. Using the fundamental insight gained, a set of key parameters will be determined to maximise the potential of supramolecular biocompatible hydrogels, driving paradigm shifts in sustainable science and biomaterial applications through the precise tuning of physical properties.