Innovating Works

ELECTROFLUID

Financiado
Conductive suspension flows for soft electronics
Today, most electronics and robots are based on solid metals and semiconductors. This project aims at Electrofluids that conduct electrons while flowing as liquids. Because liquids have virtually no yield strength, they are ideal... Today, most electronics and robots are based on solid metals and semiconductors. This project aims at Electrofluids that conduct electrons while flowing as liquids. Because liquids have virtually no yield strength, they are ideal materials to replace solid metal leads in truly soft devices. ELECTROFLUID uses highly concentrated suspensions that are liquid in a wide temperature range. Transient conductive networks in suspended particles of commonly used conductors provide high level of electronic conductivity at the viscosities required for soft electronics and robots. They contain common conductive materials such as carbon, silver, gold, and copper and do not require specialized low-melting alloys of gallium or other expensive elements. In order to create stable Electrofluids with large conductivity at low viscosity with tuneable rheology, I study the interplay between particle-particle friction, contact resistance, percolation, bulk resistance, and suspension viscosity. I use both custom-synthesized and commercial particles in a size range of tens of nanometres to few microns and with different shapes, modify their surfaces with conventional and pi-conjugated surfactants, and formulate concentrated suspensions that exhibit large conductivity at low viscosity. The combination of different particle sizes, shapes, and fluids enables tuning the properties of the fluid towards specific application cases, for example to create highly flexible leads for logic signals versus high-power connections for the connection of actuators. The fluids will be encapsulated in elastomer tubes or micropatterned surfaces as they are commonly used in stretchable electronics. The specific aims of the project are: (i) to design highly concentrated suspensions that form transient percolating networks, (ii) to use this knowledge and synthesize fluids with tuneable electrical conductivity at low viscosity, (iii) to demonstrate that Electrofluids can be curtailed for particular applications. ver más
31/12/2025
INM
1M€
Duración del proyecto: 62 meses Fecha Inicio: 2020-10-02
Fecha Fin: 2025-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-10-02
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2020-STG: ERC STARTING GRANTS
Cerrada hace 5 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
LEIBNIZINSTITUT FUER NEUE MATERIALIEN GEMEINN... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5