Computationally and experimentallY BioEngineeRing the next generation of Growing...
Congenital Heart Disease (CHD) results when the heart abnormally develops before birth. With diminished cardiac function, the heart fails to supply the required oxygenated blood to the body, causing a cascade of failures at differ...
ver más
Descripción del proyecto
Congenital Heart Disease (CHD) results when the heart abnormally develops before birth. With diminished cardiac function, the heart fails to supply the required oxygenated blood to the body, causing a cascade of failures at different scales that prevent the newborn from growing normally. Even with improved surgical and medical treatments, CHD remains a lifelong risk factor for many diseases.
An emerging application in cardiac tissue engineering is the 3D bioprinting of human hearts, or their parts, for clinical transplantation, with CHD representing a potential therapeutic target. Whereas the fabrication of bioartificial hearts is currently feasible, there remain significant scientific and technological challenges that yet need to be overcome. The development of novel experimental approaches is fundamental. At the same time, there is a pressing need for complementary computational methods to efficiently assist in the design of biophysically feasible and printable hearts, which must necessarily grow with the CHD patient's body while adapting to lifelong changes in hemodynamic conditions.
In this project, therefore, I will develop a highly novel and interrelated experimental and computational approach for reproducing and predicting growing conditions of bioengineered hearts. The ambitious experimental design will enhance the maturation of cardiac muscle and biomechanical function of bioprinted ventricles in dynamic bioreactors. The highly-coupled multi-physics computational platform will describe these complex processes under multiple stimulated conditions to, ultimately, predict the critical adaptation and evolution of bioengineered ventricles potentially implanted in CHD patients. Therefore, by integrating ground-breaking methods within an extremely complex scenario, G-CYBERHEART will cross boundaries to drive advances in regenerative medicine and tissue engineering that will help accelerate the development of the bioengineered heart of the future.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.