COMputational Models FOR patienT stratification in urologic cancers – Creating r...
COMputational Models FOR patienT stratification in urologic cancers – Creating robust and trustworthy multimodal AI for health care
In the EU, treating patients with prostate (PCa) and kidney cancer (KC) costs more than €6.6 billion annually. Yet, PCa and KC are often managed inadequately, which is associated with high costs and negative consequences such as h...
In the EU, treating patients with prostate (PCa) and kidney cancer (KC) costs more than €6.6 billion annually. Yet, PCa and KC are often managed inadequately, which is associated with high costs and negative consequences such as hospitalisation, psychosocial stress and poorer chances of survival. Diagnostic and therapeutic effectiveness depends on multimodal information, including cancer type, stage, and location as well as the patient’s age and health. Current clinical methods do not effectively use the large amount of mostly unstructured data. The main challenge in developing multimodal models is the lack of access to data sources and missing joint validation of data through collaboration between clinicians and computer scientists. A strength of our consortium is access to multiple sources of medical data, including the largest expert-annotated database for PCa and KC to date. Our overall goal is to develop and deploy marketable data-driven multimodal decision support systems to improve clinical prognosis, patient stratification and individual therapy for patients suffering from PCa or KC, defining a new state-of-the-art for the development of multimodal medical AI applications. We will develop AI models for PCa and KC that incorporate multimodal data, e.g., image data, unstructured medical text notes, laboratory information and biomarkers, and perform a prospective validation of the models in a large prospective multicentric international study. At the same time, we will assess the trust of healthcare professionals and patients in such AI tools and explore how this trust can be increased.By providing improved, personalised diagnosis and prognosis assessment, the multimodal models will ultimately contribute to better patient outcomes and quality of life. The models developed in this study can be used as basis for any use case where imaging and electronic medical records are relevant, as they are easily adaptable and can help combat different types of cancer.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.