Innovating Works

COTOFLEXI

Financiado
Computational Modelling Topological Optimization and Design of Flexoelectric Na...
Computational Modelling Topological Optimization and Design of Flexoelectric Nano Energy Harvesters Flexoelectricity is the generation of electric polarization under mechanical strain gradient or mechanical deformation due to the electric field gradient (converse flexo). It is a more general phenomenon than the linear change in... Flexoelectricity is the generation of electric polarization under mechanical strain gradient or mechanical deformation due to the electric field gradient (converse flexo). It is a more general phenomenon than the linear change in polarization due to stress, the piezoelectric effect. Flexoelectricity exists in a wider range of centrosymmetric materials especially nontoxic materials useful for biomedical application. It grows dominantly in energy density at submicro- or nanoscale enabling self-powered nano devices such as body implants and small-scale wireless sensors. Among the emerging applications of flexoelectricity, energy harvesters are the basic front devices of wide technological impact. Despite the advantages offered by flexoelectricity, research in this field is still in germination. Experiments are limited in measuring, explaining and quantifying some key phenomena. Materials engineering and engineering of strain are the key challenges to bring energy harvesting structures/systems to become a viable technology. Accomplishment of this task pressingly requires a robust modelling tool that can assist the development of flexoelectric energy harvesters. Hence, the aim of the project is to develop a computational framework to support the characterization, design, virtual testing and optimization of the next generation nano energy harvesters. It will be able to (1) predict the energy conversion efficiency and output voltage influenced by layout and surface effects of structures in 3D, (2) to virtually test the performance with various vibrational dynamic conditions, and (3) to break through current designs of simple geometry for flexoelectric structures by optimization considering manufacturing constraints. Innovative metamaterial/3D folding energy harvesters expectantly outperforming current piezoelectric energy harvesters of the same size will be manufactured and tested. ver más
31/07/2025
LUH
1M€
Duración del proyecto: 81 meses Fecha Inicio: 2018-10-05
Fecha Fin: 2025-07-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2018-10-05
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2018-STG: ERC Starting Grant
Cerrada hace 7 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOV... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5