Computational mechanisms of teacher-pupil knowledge transfer
Teaching is one of the most complex and efficient forms for social learning, as it largely mitigates the costs of individual learning through the capitalization of others’ experiences. However, while recent efforts have shed consi...
Teaching is one of the most complex and efficient forms for social learning, as it largely mitigates the costs of individual learning through the capitalization of others’ experiences. However, while recent efforts have shed considerable light into how human learning is computationally modeled, very little is known about how human teaching can be computationally implemented in the context of goal-directed behaviours. COMPTEACH is an innovative research program conceived to bridge this gap by combining cutting-edge methods in cognitive science, experimental and social psychology, with state-of-the-art techniques from Reinforcement Learning (RL) and Natural Language Processing (NLP). It aims at understanding the computational makeup of pedagogical knowledge transfer between experienced learners (teachers) and novel naive learners (pupils). COMPTEACH will first identify actors’ choice strategies (as indexed by model parameters) and evaluate the extent to which pedagogical texts crafted by teachers and addressed to pupils lead to meaningful parameter correlations between the two. Secondly, the action will implementNLP tools to identify how the teachers' own computational strategies are encoded in the semantic and syntactic structures of pedagogical texts. Finally, the project will study how the teachers’ own learning process and metacognitive features affect knowledge transfer. By tackling teaching from a computational perspective without losing sight of its socio-cognitive underpinnings, COMPTEACH will produce a novel quantitative understanding of experience transfer, and establish novel bridges between teaching, cognitive science, social psychology and computational modeling. Future directions of this project will involve studying knowledge transfer in individuals afflicted by lasting underlying health conditions, and the development of ecological experiments to approach teacher-student and doctor-patient real-world interactions.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.