COmputational DEsign for 4D BIOfabrication: harnessing programmable materials fo...
COmputational DEsign for 4D BIOfabrication: harnessing programmable materials for dynamic pre-clinical cancer models
Cancer is a global health burden. In-vitro pre-clinical models play a key role in fighting this burden by encompassing all the activities prior to clinical trials, from tumor microenvironment reconstruction to drug candidate selec...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MicroBone
Novel 3D platforms to engineer bone microtissues for in vitr...
150K€
Cerrado
Design2Guide
Cell-instructive matrices to deconstruct tumour tissues
150K€
Cerrado
MechanoGAP
Personalised Mechanobiological Models to Predict Tumour Grow...
1M€
Cerrado
AMNIOGEL
Extracellular matrix derived products from human placenta to...
150K€
Cerrado
3DTUMOUR
Development of a high throughput microplate based device to...
150K€
Cerrado
PID2019-106386RB-I00
BIOMATERIALES DE PRECISION BIOINGENIERIZADOS PARA ESTRATEGIA...
109K€
Cerrado
Información proyecto CoDe4Bio
Duración del proyecto: 70 meses
Fecha Inicio: 2022-02-15
Fecha Fin: 2027-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Cancer is a global health burden. In-vitro pre-clinical models play a key role in fighting this burden by encompassing all the activities prior to clinical trials, from tumor microenvironment reconstruction to drug candidate selection. However, the frequent failure of promising pre-clinical drug candidates highlights two major drawbacks of these models: (i) the difficult reproduction of the dynamic cancer structure related to numerous physical cues; (ii) their experimental nature that suffers from high costs, long times, and limited understanding. Consequently, the relationship between dynamic physical cues, cell behavior, and drug efficacy is still unknown. CoDe4Bio tackles such a huge knowledge deficiency. We propose a radical methodology shift to a computational approach to harness programmable materials, able to change properties on demand, and realize dynamic 4D biofabricated models whose stimuli-triggered evolution over time (4th dimension) induces targeted physical cues on cancer cells. We will leverage my extensive experience with smart materials and structures to address the challenges of this multidisciplinary project. Specifically, we will develop a computational design framework for 4D biofabrication that combines new data-, geometry-, and model-based methods with additive manufacturing and in-vitro observations. This framework will allow us to develop customized stimuli-responsive materials and engineer a new generation of 4D constructs with programmable mechano-structural properties and acting as mechanical regulators. We will assess the constructs in-vitro on chronic lymphocytic leukemia to achieve a deep understanding on how complex physical cues within lymph nodes and bone marrow affect this incurable cancer in relation to chemoimmuno and targeted therapies. CoDe4Bio will push the frontiers of solid and computational mechanics to unveil unconventional routes for pre-clinical drug screening and lay the foundation for effective dynamic cancer models.