Computational biomechanics and bioengineering 3D printing to develop a personali...
Computational biomechanics and bioengineering 3D printing to develop a personalized regenerative biological ventricular assist device to provide lasting functional support to damaged hearts
Ischemic heart disease is the main cause of death in the EU, straining patients and economies. Regenerative Medicine has failed at delivering a definitive solution, and even the breakthrough of cell reprogramming, biomaterials or...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto BRAV3
Duración del proyecto: 60 meses
Fecha Inicio: 2019-12-06
Fecha Fin: 2024-12-31
Líder del proyecto
UNIVERSIDAD DE NAVARRA
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores849
Presupuesto del proyecto
8M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Ischemic heart disease is the main cause of death in the EU, straining patients and economies. Regenerative Medicine has failed at delivering a definitive solution, and even the breakthrough of cell reprogramming, biomaterials or 3D printing, have not been able to find a curative solution. Generating a muscle with efficient pumping requires a careful recapitulation of the myocardial architecture. BRAV∃ is born with the ambition of shaping this quantum leap in the field. The overall concept is to provide a lasting functional support to injured hearts through the fabrication of regenerative personalized advanced tissue engineering-based biological ventricular assist devices (BioVADs). To do so, we will apply multimodal deep cardiac phenotyping, coupled to advanced Computational Modelling and biomechanical analysis in a large animal model of disease, to create a personalised 3D printable design. We will for the first time create a fibre-reinforced human heart-sized cardiac tissue able to recapitulate the low Young´s Modulus of the myocardium while withstanding pressures generated during the cardiac circle. Using the latest human induced pluripotent stem cell (hiPSC) technology and industrial-scale growth and differentiation, we will cellularize this novel human heart-sized constructs, creating a highly efficiently aligned cardiac tissue (including vasculature). BioVADs will be matured in in-Consortium built electromechanical stimulation bioreactors before transplantation in a porcine model of disease. We anticipate our BioVADs will constitute a one-shot regenerative treatment of IHD, decreasing the burden on healthcare providers and improving the quality of life of patients. Crucially, we will for the first time generate a wealth of information on heart development at a human scale. Delivering this novel application whilst developing the technological environment (bioreactor, chamber, pacemaker) will boost the capacity of the EU to grow economically and lead the field.