Sounds carry a large amount of information about our everyday environment and physical events that take place in it. For example, when a car is passing by, one can perceive the approximate size and speed of the car. Sound can easi...
Sounds carry a large amount of information about our everyday environment and physical events that take place in it. For example, when a car is passing by, one can perceive the approximate size and speed of the car. Sound can easily and unobtrusively be captured e.g. by mobile phones and transmitted further – for example, tens of hours of audio is uploaded to the internet every minute e.g. in the form of YouTube videos. However, today's technology is not able to recognize individual sound sources in realistic soundscapes, where multiple sounds are present, often simultaneously, and distorted by the environment.
The ground-breaking objective of EVERYSOUND is to develop computational methods which will automatically provide high-level descriptions of environmental sounds in realistic everyday soundscapes such as street, park, home, etc. This requires developing several novel methods, including joint source separation and robust pattern classification algorithms to reliably recognize multiple overlapping sounds, and a hierarchical multilayer taxonomy to accurately categorize everyday sounds. The methods are based on the applicant's internationally recognized and awarded expertise on source separation and robust pattern recognition in speech and music processing, which will allow now tackling the new and challenging research area of everyday sound recognition.
The results of EVERYSOUND will enable searching for multimedia based on its audio content, which is not possible with today's technology. It will allow mobile devices, robots, and intelligent monitoring systems to recognize activities in their environments using acoustic information. Producing automatically descriptions of vast quantities of audio will give new tools for geographical, social, cultural, and biological studies to analyze sounds related to human, animal, and natural activity in urban and rural areas, as well as multimedia in social networks.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.