Computation in memory architecture based on resistive devices
"The MNEMOSENE project aims at demonstrating a new computation-in-memory (CIM) based on resistive devices together with its required programming flow and interface. To develop the new architecture, the following scientific and tec...
"The MNEMOSENE project aims at demonstrating a new computation-in-memory (CIM) based on resistive devices together with its required programming flow and interface. To develop the new architecture, the following scientific and technical objectives will be targeted:
• Objective 1: Develop new algorithmic solutions for targeted applications for CIM architecture.
• Objective 2: Develop and design new mapping methods integrated in a framework for efficient compilation of the new algorithms into CIM macro-level operations; each of these is mapped to a group of CIM tiles.
• Objective 3: Develop a macro-architecture based on the integration of group of CIM tiles, including the overall scheduling of the macro-level operation, data accesses, inter-tile communication, the partitioning of the crossbar, etc.
• Objective 4: Develop and demonstrate the micro-architecture level of CIM tiles and their models, including primitive logic and arithmetic operators, the mapping of such operators on the crossbar, different circuit choices and the associated design trade-offs, etc.
• Objective 5: Design a simulator (based on calibrated models of memristor devices & building blocks) and FPGA emulator for the new architecture (CIM device combined with conventional CPU) in order demonstrate its superiority. Demonstrate the concept of CIM by performing measurements on fabricated crossbar mounted on a PCB board.
A demonstrator will be produced and tested to show that the storage and processing can be integrated in the same physical location to improve energy efficiency and also to show that the proposed accelerator is able to achieve the following measurable targets (as compared with a general purpose multi-core platform) for the considered applications:
• Improve the energy-delay product by factor of 100X to 1000X
• Improve the computational efficiency (#operations / total-energy) by factor of 10X to 100X
• Improve the performance density (# operations per area) by factor of 10X to 100X"ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.