Compressed Sensing Techniques for Wireless Sensor Networks
The emerging Compressed Sensing theory provides an entirely new perspective on the basic principles governing data acquisition, compression, and reconstruction. The main goal of this project is to understand the fundamental design...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TEC2010-17816
CODIFICACION CONJUNTA DE CANAL Y DATOS PARA REDES COOPERATIV...
189K€
Cerrado
TEC2013-41604-R
OPTIMIZACION Y MONITORIZACION ROBUSTA EN REDES DE COMUNICACI...
193K€
Cerrado
TEC2009-12098
PROCESADO DISTRIBUIDO EN REDES DE SENSORES INALAMBRICAS: APL...
97K€
Cerrado
INC-TU-2011-1558
Explotación de las correlaciones espacio-temporales para la...
105K€
Cerrado
RaSeCoL
RaSeCoL Radar Sensing Communication and Learning for Next...
183K€
Cerrado
Información proyecto COMPRESS NETS
Duración del proyecto: 32 meses
Fecha Inicio: 2018-04-03
Fecha Fin: 2020-12-31
Líder del proyecto
LINKOPINGS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
186K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The emerging Compressed Sensing theory provides an entirely new perspective on the basic principles governing data acquisition, compression, and reconstruction. The main goal of this project is to understand the fundamental design principles and investigate the ultimate capabilities of Compressed Sensing techniques in wireless sensor networks. What distinguishes this project from prior related work is that it addresses large sensor networks that rely only on wireless interconnections and are subjected to arbitrary temporal and spatial variability (caused, e.g., by channel fading, addition/removal of nodes, node mobility, etc.). We propose an optimization-based methodology which integrates compressed sensing and wireless data transport into a unified optimization framework which will serve as the mathematical basis for a systematic design and, ultimately, will reveal the performance limits. This work will provide: 1) mathematical characterizations of the optimal tradeoffs between different fundamental performance criteria (e.g., energy versus sensing accuracy), and 2) practical algorithms and hierarchically structured network protocols (i.e., key enablers for Internet of Things (IoT) applications) able of handling large amount of data with lower energy and bandwidth consumption than in existing systems. The ultimate goal is to develop the foundations for a general theory of compressive sensing in wireless sensor networks which includes all aspects mentioned above. Such theory will have a breakthrough-making impact both through direct application on the wireless sensor networks, and in the science of network and data processing in other fields, including economics, transportation, biology, etc. From a career development perspective, the main goal is to strengthen the researcher’s interdisciplinary competence and research-leadership skills for pursuing the next level of career: becoming an internationally recognized, top-tier research leader in ICT.