Comprehensive Investigations of Aerosol Droplet Surfaces and Their Climate Impac...
Comprehensive Investigations of Aerosol Droplet Surfaces and Their Climate Impacts
By serving as cloud droplet seeds, aerosols represent the largest negative (cooling) and most uncertain climate forcing. Particulate matter is also a major contributor to air pollution, attributed to ~7 million annual deaths. Aero...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SURFACE
The unexplored world of aerosol surfaces and their impacts.
1M€
Cerrado
CGL2013-48491-R
ESTUDIO DEL EFECTO RADIATIVO DIRECTO E INDIRECTO DE LOS AERO...
15K€
Cerrado
CTM2017-82929-R
CARACTERIZACION DE AEROSOLES ATMOSFERICOS EN LA ANTARTIDA
103K€
Cerrado
A-LIFE
Absorbing aerosol layers in a changing climate aging lifet...
2M€
Cerrado
CTM2013-45223-P
PRECURSORES DE OXIDANTES Y RADICALES EN ATMOSFERAS DE FONDO:...
125K€
Cerrado
CGL2016-78594-R
EPISODIOS DE ALTOS NIVELES DE OZONO, PARTICULAS ULTRAFINAS Y...
390K€
Cerrado
Información proyecto AeroSurf
Duración del proyecto: 65 meses
Fecha Inicio: 2020-08-11
Fecha Fin: 2026-01-31
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
By serving as cloud droplet seeds, aerosols represent the largest negative (cooling) and most uncertain climate forcing. Particulate matter is also a major contributor to air pollution, attributed to ~7 million annual deaths. Aerosol surfaces hold the greatest source of uncertainty for atmospheric chemistry and climate impacts. Surfactants are now routinely identified within atmospheric aerosol samples, and surface tension governs the fraction of particles that activate into cloud droplets, significantly impacting aerosol-cloud climate effects. Sunlight-driven interfacial reactions have recently emerged as important modifiers of atmospheric composition and proceed via unique pathways relative to bulk solutions. A complete understanding of aerosol climate and health impacts requires detailed knowledge of aerosol surface composition and reactivity. However, few approaches directly interrogate droplet surfaces, hindering incorporation of surface-mediated processes into climate and air quality models. This project will study directly the droplet-air interface of picolitre droplets in size ranges relevant to growing cloud droplets to develop a comprehensive, molecular level understanding of interfacial composition, reactivity, and climate and health impacts. Aerosol droplet surfaces will be studied with novel, sensitive approaches. The dynamic and equilibrium partitioning of surfactants to aerosol droplet surfaces will be investigated directly for the first time, providing information required for accurate cloud droplet activation predictions. Entirely new approaches to selectively analyse the surface and bulk molecular composition of a levitated micron-sized droplet by mass spectrometry will allow direct investigation of chemistry on aerosol surfaces. Together, these approaches will address outstanding questions in interfacial photochemistry, link directly droplet surface tension to climate impacts, and resolve a poorly understood aspect of aerosol chemistry.