Comprehensive characterization and effective combinatorial targeting of high gra...
Comprehensive characterization and effective combinatorial targeting of high grade serous ovarian cancer via single cell analysis
The goal of this multidisciplinary project is to comprehensively characterise high-grade serous ovarian cancer (HGS-OvCa) at single-cell level, identify the best combination of drug combination to kill HGS-OvCa populations and co...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MaCaROM
Mapping Cancer Response using Organoids and Mass cytometry
191K€
Cerrado
DECIDER
Improved clinical decisions via integrating multiple data le...
15M€
Cerrado
FPSA13-1E-2048
Integrando la Medicina de Precisión a Nivel de la Célula Ind...
1K€
Cerrado
SENSITIVITYMARKERS
Clinical validation of prognostic biomarkers of chemotherapy...
71K€
Cerrado
CTCPROTEOMIC
Single cell proteomics for studying circulating tumor cells...
200K€
Cerrado
MR O MICS
Unravelling Tumour Biology In Ovarian Cancer With Precision...
1M€
Cerrado
Información proyecto HERCULES
Duración del proyecto: 66 meses
Fecha Inicio: 2015-12-02
Fecha Fin: 2021-06-30
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
6M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The goal of this multidisciplinary project is to comprehensively characterise high-grade serous ovarian cancer (HGS-OvCa) at single-cell level, identify the best combination of drug combination to kill HGS-OvCa populations and commercialise a predictive biomarker kit for finding the right therapeutic regimen to the right patient.
This project takes an advantage on prospectively and longitudinally collected fresh sample specimens from multiple anatomic sites of HGS-OvCa patients with metastatic disease. Fluorescence activated cell sorting and recently developed mass cytometry are used to identify subpopulations in HGS-OvCa tumors. This is followed by single-cell analysis at genetic and transcriptomics levels, and ex vivo drug screening experiments. These data will be used to establish network models to predict the most effective combinatorial treatments. The key results will be validated with existing HGS-OvCa data together with prospective and retrospective cohorts and in vivo models. The clinically most actionable treatment suggestions from our
modelling efforts will be translated to HGS-OvCa patient care.
Ovarian cancer kills more than 40,000 women in Europe every year due to lack of effective and long-lasting therapeutic regimens. HERCULES presents an innovative strategy to suggest effective treatments that lead to a marked decrease in ovarian cancer deaths and reduce the number of expensive but inefficient treatments. Our approach paves the way to move beyond the current trial-and-error clinical assessment of drug combinations toward more systematic prediction of the most effective drug combinations for each patient. The proposed approach will be a major breakthrough in systems medicine and will benefit individual ovarian cancer patients and the health-care system through more effective treatments, and the
diagnostic and pharmaceutical industry through tools for better stratified clinical trials, and novel treatment and diagnostic modalities.