Innovating Works

CN Identity

Financiado
Comprehensive anatomical genetic and functional identification of cerebellar nu...
Comprehensive anatomical genetic and functional identification of cerebellar nuclei neurons and their roles in sensorimotor tasks How does the brain integrate diverse sensory inputs and generate appropriate motor commands? Our cerebellum is a key region for such a sensorimotor processing, empowered by its sophisticated neural computation and constant communi... How does the brain integrate diverse sensory inputs and generate appropriate motor commands? Our cerebellum is a key region for such a sensorimotor processing, empowered by its sophisticated neural computation and constant communication with other brain regions. The well-timed cerebellar information is integrated and funneled to other brain regions through the cerebellar nuclei (CN). Yet, how CN circuitry contributes to the cerebellar control of sensorimotor processing is unclear. My recent work indicates that the CN activity serves various functions ranging from the online motor control, the amplitude amplification of cerebellar outputs to the control of motor planning. Given these advances, I am now in a unique position to decipher the properties of CN neurons and identify their specific roles in different forms of sensorimotor processing. It is my central hypothesis that depending on the specific demands of the task, CN neurons can either facilitate or suppress the activity of downstream regions with millisecond precision; and the anatomical, genetic and functional properties of CN neurons are tailored to the particular task involved. To test this hypothesis, I will 1) identify the activity patterns of different CN modules during the acquisition and execution of two sensorimotor tasks and characterize the relevant extra-cerebellar inputs to these modules; 2) identify the connectivity-transcription logic of different CN modules and link them to their task-specific outputs; and 3) examine the impacts of manipulating anatomically and/or genetically defined CN neurons on the downstream regions during different sensorimotor tasks. I will accomplish these key objectives by developing various novel electrophysiological, optogenetic, molecular and imaging techniques. My research is likely to break new ground, demonstrating that the identity of CN neurons is determined by their differential temporal demands of sensorimotor tasks controlled by different brain structures. ver más
31/10/2025
1M€
Duración del proyecto: 72 meses Fecha Inicio: 2019-10-07
Fecha Fin: 2025-10-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-10-07
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2019-STG: ERC Starting Grant
Cerrada hace 6 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDA... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5