Questions involving the scalar curvature bridge many areas inside mathematics including geometric analysis, differential geometry and algebraic topology, and they are naturally related to the mathematical description of general re...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ISOPARAMETRIC
Geometric and analytic aspects of isoparametric hypersurface...
158K€
Cerrado
MTM2016-77093-P
SOBRE LA CURVATURA EN GEOMETRIA Y ANALISIS
58K€
Cerrado
RSC AND RMCF
Rigidity of Scalar Curvature and Regularity for Mean Curvatu...
100K€
Cerrado
PID2020-116126GB-I00
GEOMETRIA SEMI-RIEMANNIANA Y FLUJOS GEOMETRICOS EN FISICA MA...
109K€
Cerrado
PGC2018-096454-B-I00
AUTOMORFISMOS DE SUPERFICIES DE RIEMANN Y DE KLEIN Y SUS ESP...
43K€
Cerrado
Información proyecto COMSCAL
Duración del proyecto: 59 meses
Fecha Inicio: 2024-01-01
Fecha Fin: 2028-12-31
Líder del proyecto
UNIVERSITAET MUENSTER
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Questions involving the scalar curvature bridge many areas inside mathematics including geometric analysis, differential geometry and algebraic topology, and they are naturally related to the mathematical description of general relativity. There are two main flavours of methods to probe the geometry of scalar curvature: One goes back to Lichnerowicz and uses various versions of index theory for the Dirac equation on spinors. The other is broadly based on minimal hypersurfaces and was initiated by Schoen and Yau. On both types of methods there has been tremendous progress over recent years sparked by novel quantitative comparison and rigidity questions due to Gromov and by on-going attempts to arrive at a deeper geometric understanding of lower scalar curvature bounds. In this proposal we view established landmark results, such as the non-existence of positive scalar curvature on the torus, together with the more recent quantitative problems from a conceptually unified standpoint, where a comparison principle for scalar and mean curvature along maps between Riemannian manifolds plays the central role.Guided by this point of view, we aim to develop fundamentally new tools to study scalar curvature that bridge long-standing gaps in between the existing techniques. This includes a far-reaching generalization of the Dirac operator approach expanding upon techniques pioneered by the PI, and novel applications of Bochner-type methods. We will also study analogous comparison problems on domains with singular boundary motivated by a first synthetic characterization of lower scalar curvature bounds in terms of polyhedral domains, and by the general quest for extending the study of scalar curvature beyond smooth manifolds. At the same time, we will treat subtle almost rigidity questions corresponding to the rigidity aspect of our comparison principle.