Questions involving the scalar curvature bridge many areas inside mathematics including geometric analysis, differential geometry and algebraic topology, and they are naturally related to the mathematical description of general re...
Questions involving the scalar curvature bridge many areas inside mathematics including geometric analysis, differential geometry and algebraic topology, and they are naturally related to the mathematical description of general relativity. There are two main flavours of methods to probe the geometry of scalar curvature: One goes back to Lichnerowicz and uses various versions of index theory for the Dirac equation on spinors. The other is broadly based on minimal hypersurfaces and was initiated by Schoen and Yau. On both types of methods there has been tremendous progress over recent years sparked by novel quantitative comparison and rigidity questions due to Gromov and by on-going attempts to arrive at a deeper geometric understanding of lower scalar curvature bounds. In this proposal we view established landmark results, such as the non-existence of positive scalar curvature on the torus, together with the more recent quantitative problems from a conceptually unified standpoint, where a comparison principle for scalar and mean curvature along maps between Riemannian manifolds plays the central role.Guided by this point of view, we aim to develop fundamentally new tools to study scalar curvature that bridge long-standing gaps in between the existing techniques. This includes a far-reaching generalization of the Dirac operator approach expanding upon techniques pioneered by the PI, and novel applications of Bochner-type methods. We will also study analogous comparison problems on domains with singular boundary motivated by a first synthetic characterization of lower scalar curvature bounds in terms of polyhedral domains, and by the general quest for extending the study of scalar curvature beyond smooth manifolds. At the same time, we will treat subtle almost rigidity questions corresponding to the rigidity aspect of our comparison principle.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.