COMPARATIVE EVOLUTIONARY AND FUNCTIONAL GENOMICS OF DISEASE VECTOR ANOPHELES MOS...
COMPARATIVE EVOLUTIONARY AND FUNCTIONAL GENOMICS OF DISEASE VECTOR ANOPHELES MOSQUITOES
A major human health concern centres on diseases transmitted by blood-feeding insects, including malaria, dengue fever, and filariasis. Declining successes with pesticides necessitate novel vector control approaches with detailed...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
VecTrap
Sex determination pathway in the malaria vector Anopheles ga...
280K€
Cerrado
MetAeAvIm
The Role of the Metabolism in Mosquito Immunity against Deng...
185K€
Cerrado
MALARES
Genetics of Resistance to Malaria Parasites in the Mosquito...
1M€
Cerrado
AnoPath
Genetics of mosquito resistance to pathogens
2M€
Cerrado
PID2020-115874GB-I00
GENOMICA DE LA ADAPTACION A MEDIOS URBANOS Y NATURALES
230K€
Cerrado
MOVE
Modelling to Optimize Vector Elimination Destabilising mos...
1M€
Cerrado
Información proyecto ANOCAP
Líder del proyecto
UNIVERSITE DE GENEVE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
264K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A major human health concern centres on diseases transmitted by blood-feeding insects, including malaria, dengue fever, and filariasis. Declining successes with pesticides necessitate novel vector control approaches with detailed biological understanding facilitating targeted interventions that limit ecological knock-on effects. Growing concerns over global climate change augment the urgency: expanding habitats and rapid adaptability make the threat greater than ever before. Research on disease-vector mosquitoes was transformed with the sequencing of the Anopheles gambiae genome, facilitating large-scale studies and development of extensive functional genomics tools. Of ~500 Anopheline species, only about two dozen transmit human malaria, with vectorial capacity varying greatly among even very closely-related mosquito species, making the understanding of what defines an effective malaria vector critical to developing successful controls. These variations, and other characteristics such as insecticide resistance and chemosensory abilities, derive from an underlying genetic basis, thus, to address this question requires dissection of genetic determinants of observed diversity in behavioural and physiological responses. Sequencing multiple additional Anopheline mosquito genomes will build extensive genomic data resources facilitating examination of the evolution of genetic determinants of vectorial capacity among Anophelines. To this end, this proposal aims to develop and employ computational strategies to interrogate multiple mosquito genomes for patterns of natural selection shaping the repertoire of functional genomic elements governing mosquito biology. Through the comprehensive, phylogenetically informed, comparative genome analysis of multiple mosquito species with variable vectorial capacities and eco-ethological characteristics, this project aims to significantly advance our understanding of the biology that underlies transmission of vector-borne diseases.