Combining carbon nanotubes and gold nanorods to investigate the extracellular sp...
Combining carbon nanotubes and gold nanorods to investigate the extracellular space around synapses during neuronal communication
The extracellular space (ECS) is a complex network of biomolecules that constitutes a key microenvironment for cellular communication, homeostasis, and clearance of toxic metabolites. In the brain, signalling molecules, neuromodul...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SynECS
Duración del proyecto: 33 meses
Fecha Inicio: 2018-03-28
Fecha Fin: 2020-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The extracellular space (ECS) is a complex network of biomolecules that constitutes a key microenvironment for cellular communication, homeostasis, and clearance of toxic metabolites. In the brain, signalling molecules, neuromodulators, and nutrients transit via the ECS, therefore mediating the communication between cells. To date, understanding the role of the ECS in modulating neuronal communication represents a knowledge frontier in brain research. This limit has conceptual and methodological roots: the complex 3-D dynamical organization of the ECS and the current lack of dedicated relevant investigation tools. The aim of this project is to combine several innovative nanotechnological approaches to reveal the morphological and rheological properties of the brain extracellular space around synapses during neuronal communication processes. To decrypt the intimate interplay between ECS and synapses in neuronal communication, this Action proposes to use innovative optical nanoimaging and nanostimulation methodologies based on nano-probes (single-wall carbon nanotubes, SWCNTs, and gold nanorods, Au NRs). Au NRs will be used to stimulate individual neurons in hippocampal cultured organotypic slices, while SWCNTs will image and unveil the rheological characteristics of the ECS around synapses. The outcomes of this project will bring us a step closer to fully understand chemical-based neural communication and synaptic connectivity.