"Combinatorics, and its interplay with geometry, has fascinated our ancestors as shown by early stone carvings in the Neolithic period. Modern combinatorics is motivated by the ubiquity of its structures in both pure and applied m...
"Combinatorics, and its interplay with geometry, has fascinated our ancestors as shown by early stone carvings in the Neolithic period. Modern combinatorics is motivated by the ubiquity of its structures in both pure and applied mathematics.
The work of Hochster and Stanley, who realized the relation of enumerative questions to commutative algebra and toric geometry made a vital contribution to the development of this subject. Their work was a central contribution to the classification of face numbers of simple polytopes, and the initial success lead to a wealth of research in which combinatorial problems were translated to algebra and geometry and then solved using deep results such as Saito's hard Lefschetz theorem. As a caveat, this also made branches of combinatorics reliant on algebra and geometry to provide new ideas.
In this proposal, I want to reverse this approach and extend our understanding of geometry and algebra guided by combinatorial methods. In this spirit I propose new combinatorial approaches to the interplay of curvature and topology, to isoperimetry, geometric analysis, and intersection theory, to name a few. In addition, while these subjects are interesting by themselves, they are also designed to advance classical topics, for example, the diameter of polyhedra (as in the Hirsch conjecture), arrangement theory (and the study of arrangement complements), Hodge theory (as in Grothendieck's standard conjectures), and realization problems of discrete objects (as in Connes embedding problem for type II factors).
This proposal is supported by the review of some already developed tools, such as relative Stanley--Reisner theory (which is equipped to deal with combinatorial isoperimetries), combinatorial Hodge theory (which extends the ``K\""ahler package'' to purely combinatorial settings), and discrete PDEs (which were used to construct counterexamples to old problems in discrete geometry)."ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.