Combinatorial Applications of Random Processes and Expansion
The concepts of Randomness and Expansion are pervasive throughout Mathematics and its applications to many areas of Science and Engineering. The mathematical study of Expansion can be traced back to the ancient Greeks and of Proba...
The concepts of Randomness and Expansion are pervasive throughout Mathematics and its applications to many areas of Science and Engineering. The mathematical study of Expansion can be traced back to the ancient Greeks and of Probability to the analysis (e.g. by Fermat and Pascal) of games of chance. In the modern era, both concepts are influential in many areas of Mathematics (this proposal will emphasise Combinatorics and Probability, and also touch on Analysis, Geometry, Topology, Number Theory and Theoretical Computer Science). Within Science and Engineering, topics related to the mathematical problems covered in this proposal include Approximation Algorithms (Counting and Sampling), Statistical Physics (Magnetism, Lattice Gases, Polymer Models), Mathematical Biology (Epidemiology), Control Theory and Fluid Flow.
My recent and ongoing research has generated several exciting new ideas and methods. The most recent of these, the Cluster Expansion Method (work with Matthew Jenssen), is a far-reaching program to apply a classical tool from Statistical Physics to developing methods for describing the typical structure of models such as random homomorphisms from a discrete torus. Another exciting recent technique, Global Hypercontractivity (work with Noam Lifshitz, Eoin Long and Dor Minzer), is a structural refinement of the classical hypercontractivity theorem; we will generalise many of its applications to Mathematics and Computer Science and give several new applications, e.g. in Extremal Combinatorics (via the Junta Method). I will also develop new Absorption techniques to answer constructive mathematical questions that seem beyond the reach of Randomised Algebraic Construction (a method I developed to solve Steiner's 1852 question on the Existence of Designs).ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.