Objective: To find and produce novel target compounds against the influenza virus. Influenza A capsid protein is the target since it does not mutate at the same rate as the Hemagglutinin or Neuraminidase proteins. We aim to develo...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto FLUDRUGSTRATEGY
Líder del proyecto
VIRONOVA AB
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Objective: To find and produce novel target compounds against the influenza virus. Influenza A capsid protein is the target since it does not mutate at the same rate as the Hemagglutinin or Neuraminidase proteins. We aim to develop new therapeutic antiviral solutions to combat the disease. Beyond state of the art: The project combines knowledge based design and synthesis of compounds with unique patented image analysis and mathematical algorithm software to find and develop new types of potential antiviral molecules. The expertise and methodology allows for rapid discovery of lead molecules with the potential to provide new classes of drugs/vaccines which are less sensitive to viral mutation or reassortment. Work plan: Key molecules with optimal binding kinetics to the Influenza capsid protein will be designed and synthesized then analysed and tested in two separate experimental systems for their effect upon the virus structure and maturation process. The evaluation of novel lead drugs will be performed using a combination of new rapid image analysis, backed up by established viral analysis techniques. Finally a plan will be created for the continued verification and development of the lead molecules. Impact: We aim to produce a new class of antiviral drug candidates which specifically bind to influenza A capsid protein. These substances may have two potential effects; 1. Binding could inhibit important protein-protein interactions thereby inhibit virus formation. 2. Binding to the capsid protein could change the virus structure or stabilize the virus particle, resulting in non-infectious particles to which the host´s immune system could respond. The expected impact will be i) identification of targets against influenza to provide new therapeutic options ii) new opportunities to develop an anti-influenza vaccine which might help prevent an influenza pandemic, iii) to support the continued commercial development of the two SME partners.