Coherent Optomechanical and Hyperfine interactions Engineering with Silicon Vaca...
Coherent Optomechanical and Hyperfine interactions Engineering with Silicon Vacancy impurities in diamond for quantum networks
The proposal COHESiV aims to establish a novel physical system with ideal properties for the realisation of quantum networks. Quantum information processing (QIP) promises to drastically increase computation abilities and thus unl...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QTORSS
Quantum Teleportation of Remote Solid state Spins
184K€
Cerrado
ATOMPHOTONLOQIP
Experimental Linear Optics Quantum Information Processing wi...
1M€
Cerrado
FIS2015-67161-P
MATERIA CUANTICA: DE PRINCIPIOS A APLICACIONES
237K€
Cerrado
FIS2012-37569
INTERCONEXION OPTICA ENTRE MEMORIAS CUANTICAS ATOMICAS Y DE...
211K€
Cerrado
LOQO-MOTIONS
Local quantum operations achieved through the motion of spin...
2M€
Cerrado
ION-QNET
Cavity QED Ion Quantum Network
166K€
Cerrado
Información proyecto COHESiV
Duración del proyecto: 50 meses
Fecha Inicio: 2019-04-02
Fecha Fin: 2023-06-16
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The proposal COHESiV aims to establish a novel physical system with ideal properties for the realisation of quantum networks. Quantum information processing (QIP) promises to drastically increase computation abilities and thus unlock key computational problems with wide ranging benefits. An outstanding issue is however the choice of the fundamental building block to implement QIP. COHESiV's goal is to take advantage of the remarkable optical, mechanical and spin coherence properties of a novel quantum bit, the silicon-vacancy centre (SiV) in diamond and establish it as a central component of quantum networks for the implementation of QIP. To do so, COHESiV addresses two crucial operations on which standard quantum algorithms are based: entangling two quantum bits efficiently and storing quantum information in a long-lived quantum register. COHESiV’s objectives are to 1) Interface the spin of a single SiV with a well-defined vibrational mode (phonon) of a mechanical resonator 2) Demonstrate phonon-mediated entanglement between two SiV spins 3) Take advantage of long-lived neighbouring nuclear spins to store and retrieve a quantum state encoded in the SiV spin. Owing to the fact that the strong coupling regime between spin and phonon will be attainable with current mechanical resonators thanks to the remarkably large strain susceptibility of the SiV spin, COHESiV will also aim to open the new field of quantum acousto-dynamics, analogous to quantum electrodynamics, where phonons replace photons. Those objectives will be achieved by combining the expertise of the researcher on the physics of the SiV centre with the state-of-the-art design and fabrication of diamond nanostructures of the outgoing phase partner and the breakthroughs in QIP with a comparable physical system at the host institution.