Cognitive control processes for mathematical learning neurobiological facets
Mathematics is essential for functioning in the 21st century. Critically, heterogeneity of math skills is well documented, with profound consequences for educational and professional outcomes. Heterogeneity in cognitive skills is...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto MathControl
Duración del proyecto: 53 meses
Fecha Inicio: 2020-04-15
Fecha Fin: 2024-09-16
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Mathematics is essential for functioning in the 21st century. Critically, heterogeneity of math skills is well documented, with profound consequences for educational and professional outcomes. Heterogeneity in cognitive skills is likely due to variability of several features in multiple brain systems throughout development. Yet, the characterization of these systems and their contribution to heterogeneity of math skills is still in its infancy. Building on the applicant's previous studies on functional brain plasticity during math learning, the present project combines state-of-the-art neuroimaging methods with cognitive paradigms in the context of a longitudinal design, to assess the underappreciated contribution of domain-general prefrontal brain systems to individual differences in math performance, over a critical stage of math development. This study tests the specific hypothesis that shifts in math problem-solving strategies, gradually favoring one -efficient- strategy over multiple -laborious- ones, is supported by the successful development of multiple structural and functional features of dedicated neurocognitive systems for cognitive control, anchored in the dorsal frontal-parietal cognitive control, and the insula-cingulate salience networks. Furthermore, this study tests, for the first time, the contribution of adverse environmental factors to these processes. The simultaneous investigation of biological, cognitive and environmental contributions to math performance over a critical developmental stage represents a significant step towards the early identification of individuals at risk for math deficits and propels novel ways for developing ad-hoc educational programs. Critically, this project is set to have a crucial impact on the applicant's career by broadening her theoretical and methodological skills, promoting her transition to independency, and by situating her as an international leader in a novel, interdisciplinary, translational field.