Closing the loop in dynamic vision – from single photons to behaviour in extreme...
Closing the loop in dynamic vision – from single photons to behaviour in extreme light environments
Driving along a tree-lined avenue, we have all experienced how the rapid succession of light and shade disrupts our vision. Such conditions push even synthetic sensors to their limits, but many animals master these challenges on a...
Driving along a tree-lined avenue, we have all experienced how the rapid succession of light and shade disrupts our vision. Such conditions push even synthetic sensors to their limits, but many animals master these challenges on a daily—and nightly—basis. Indeed, a high dynamic range of sensory information is a hallmark of natural environments. Explaining how sensory information is processed with the limited bandwidth in neural circuits is key to a central goal of neuroscience: understanding the neural control of behaviour in natural contexts. This question extends beyond the processing of dynamic input by nervous systems to the closed-loop nature of animal behaviour itself: as senses guide an animal’s movements, the movements in turn shape the sensory input. It necessitates a paradigm-shift to a holistic approach considering dynamic inputs, neural processing and behavioural strategies in concert. I propose visually-guided flight in nocturnal moths as uniquely suited for approaching this challenge. Probing the system in dim light, when vision operates at its limits, offers straightforward performance readouts for all stages of the control loop. To do so, we will design a novel imaging system to quantify the dynamics of natural visual environments from a flying insect’s perspective. We will then measure how dynamic tuning adjusts peripheral neurons to compensate for these spatiotemporal light variations, and how they are integrated with movement predictions in motion neurons, to guide flight behaviour. Using a one-of-a-kind facility for large-scale animal tracking, we will record the moths’ flight behaviour at unprecedented precision to reveal the strategies that optimise sensory acquisition in these challenging light conditions. Combining all stages, this project will provide a coherent framework for studying the neural basis of natural behaviour in dynamic light environments—using a unique, ecologically impactful model to close the loop from sensing to acting.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.